Электризация тел. Два вида электрических зарядов. Взаимодействие электрических зарядов. Закон сохранения электрического заряда

1. Если стеклянную палочку потереть о шёлк или бумагу, то она приобретёт способность притягивать лёгкие тела, например бумажки, волосы и пр. Тот же эффект можно наблюдать, если поднести к лёгким предметам эбонитовую палочку, потертую о мех. Тела, которые в результате трения приобретают способность притягивать другие тела, называют наэлектризованными или заряженными, а явление приобретения телами электрического заряда называют электризацией .

Подвесив на двух нитях лёгкие шарики из фольги и коснувшись каждого из них стеклянной палочкой, потёртой о шёлк, можно увидеть, что шарики оттолкнутся друг от друга. Если потом коснуться одного шарика стеклянной палочкой, потёртой о шёлк, а другого эбонитовой палочкой, потёртой о мех, то шарики притянутся друг к другу. Это означает, что стеклянная и эбонитовая палочки при трении приобретают заряды разных знаков, т.е. в природе существуют два рода электрических зарядов, имеющих противоположные знаки: положительный и отрицательный. Условились считать, что стеклянная палочка, потёртая о шёлк, приобретает положительный заряд, а эбонитовая палочка, потёртая о мех, приобретает отрицательный заряд.

Из описанного опыта также следует, что заряженные тела взаимодействуют друге другом. Такое взаимодействие называют электрическим . При этом одноимённые заряды, т.е. заряды одного знака, отталкиваются друг от друга, а разноимённые заряды притягиваются друг к другу .

На явлении отталкивания одноимённо заряженных тел основано устройство электроскопа - прибора, позволяющего определить, заряжено ли данное тело (рис. 77), и электрометра, прибора, позволяющего оценить значение электрического заряда (рис. 78).

Если заряженным телом коснуться стержня электроскопа, то листочки электроскопа разойдутся, поскольку они приобретут заряд одного знака. То же произойдёт со стрелкой электрометра, если коснуться заряженным телом его стержня. При этом, чем больше заряд, тем на больший угол отклонится стрелка от стержня.

2. Из простых опытов следует, что сила взаимодействия между заряженными телами может быть больше или меньше в зависимости от величины приобретённого заряда. Таким образом, можно сказать, что электрический заряд, с одной стороны, характеризует способность тела к электрическому взаимодействию, а с другой стороны, является величиной, определяющей интенсивность этого взаимодействия.

Заряд обозначают буквой ​\(q \) ​, за единицу заряда принят кулон: ​\([q] \) ​ = 1 Кл.

Если коснуться заряженной палочкой одного электрометра, а затем этот электрометр соединить металлическим стержнем с другим электрометром, то заряд, находящийся на первом электрометре, поделится между двумя электрометрами. Можно затем соединить электрометр с ещё несколькими электрометрами, и заряд будет делиться между ними. Таким образом, электрический заряд обладает свойством делимости. Пределом делимости заряда, т.е. наименьшим зарядом, существующим в природе, является заряд электрона. Заряд электрона отрицателен и равен 1,6·10 -19 Кл. Любой другой заряд кратен заряду электрона.

3. Электрон - частица, входящая в состав атома. В истории физики существовало несколько моделей строения атома. Одна из них, позволяющая объяснить ряд экспериментальных фактов, в том числе явление электризации, была предложена Э. Резерфордом. На основании проделанных опытов он сделал вывод о том, что в центре атома находится положительно заряженное ядро, вокруг которого по орбитам движутся отрицательно заряженные электроны. У нейтрального атома положительный заряд ядра равен суммарному отрицательному заряду электронов. Ядро атома состоит из положительно заряженных протонов и нейтральных частиц нейтронов. Заряд протона по модулю равен заряду электрона. Если из нейтрального атома удалены один или несколько электронов, то он становится положительно заряженным ионом; если к атому присоединяются электроны, то он становится отрицательно заряженным ионом.

Знания о строении атома позволяют объяснить явление электризации трением. Электроны, слабо связанные с ядром, могут отделиться от одного атома и присоединиться к другому. Это объясняет, почему на одном теле может образоваться недостаток электронов, а на другом - их избыток. В этом случае первое тело становится заряженным положительно, а второе - отрицательно.

4. Если потереть незаряженные стеклянную и эбонитовую пластинки друг о друга и затем внести их по очереди в полый шар, надетый на стержень электрометра, то электрометр зафиксирует наличие заряда и у стеклянной, и у эбонитовой пластинки. При этом можно показать, что пластинки будут иметь заряд противоположных знаков. Если в шар внести обе пластины стрелка электрометра останется на нуле. Подобное можно обнаружить, если потереть эбонитовую палочку о мех: мех, так же как и палочка, будет заряжен, но зарядом противоположного знака.

В результате трения электроны перешли со стеклянной пластины на эбонитовую, и стеклянная пластина оказалась заряженной положительно (недостаток электронов), а эбонитовая отрицательно (избыток электронов). Таким образом, при электризации происходит перераспределение заряда, электризуются оба тела, приобретая равные по модулю заряды противоположных знаков.

При этом алгебраическая сумма электрических зарядов до и после электризации остаётся постоянной : ​\(q_1+q_2+…+q_n=const \) ​.

В описанном опыте ​\(q_n \) ​ алгебраическая сумма зарядов пластин до и после электризации равна нулю.

Записанное равенство выражает фундаментальный закон природы - закон сохранения электрического заряда . Как и любой физический закон, он имеет определённые границы применимости: он справедлив для замкнутой системы тел, т.е. для совокупности тел, изолированных от других объектов.

Часть 1

1. Если массивную гирю поставить на пластину из изолятора и соединить с электрометром, а затем несколько раз ударить по ней куском меха, то гиря приобретёт отрицательный заряд и стрелка электрометра отклонится. При этом кусок меха приобретёт заряд

1) равный нулю
2) положительный, равный по модулю заряду гири
3) отрицательный, равный заряду гири
4) положительный, больший по модулю заряда гири

2. Два точечных заряда будут притягиваться друг к другу, если заряды

1) одинаковы по знаку и любые по модулю
2) одинаковы по знаку и обязательно одинаковы по модулю
3) различны по знаку, но обязательно одинаковы по модулю
4) различны по знаку и любые по модулю

3. На рисунках изображены три пары одинаковых лёгких заряженных шариков, подвешенных на шёлковых нитях. Заряд одного из шариков указан на рисунках. В каком(-их) случае(-ях) заряд второго шарика может быть отрицателен?

1) только А
2) А и Б
3) только В
4) А и В

4. Ученик во время опыта по изучению взаимодействия металлического шарика, подвешенного на шёлковой нити, с положительно заряженным пластмассовым шариком, расположенным на изолирующей стойке, зарисовал в тетради наблюдаемое явление: нить с шариком отклонилась от вертикали на угол ​\(\alpha \) ​. На основании рисунка можно утверждать,что металлический шарик

1) имеет положительный заряд
2) имеет отрицательный заряд
3) не заряжен
4) либо не заряжен, либо имеет отрицательный заряд

5. Отрицательно заряженное тело отталкивает подвешенный на нити лёгкий шарик из алюминиевой фольги. Заряд шарика:

A. положителен
Б. отрицателен
B. равен нулю

Верными являются утверждения:

1) только Б
2) Б и В
3) А и В
4) только В

6. Металлический шарик 1, укреплённый на длинной изолирующей ручке и имеющий заряд ​\(+q \) ​, приводят поочерёдно в соприкосновение с двумя такими же изолированными незаряженными шариками 2 и 3, расположенными на изолирующих подставках.

Какой заряд в результате приобретёт шарик 2?

1) 0
2) ​\(\frac{q}{4} \) ​
3) \(\frac{q}{3} \)
4) \(\frac{q}{2} \)

7. От капли, имеющей электрический заряд ​\(-2e \) ​, отделилась капля с зарядом ​\(+e \) ​. Каков электрический заряд оставшейся части капли?

1) \(-e \)
2) \(-3e \)
3) \(+e \)
4) \(+3e \)

8. Металлическая пластина, имевшая отрицательный заряд \(-10e \) , при освещении потеряла четыре электрона. Каким стал заряд пластины?

1) \(+6e \)
2) \(+14e \)
3) \(-6e \)
4) \(-14e \)

9. К водяной капле, имевшей электрический заряд \(+5e \) присоединилась кайля с зарядом \(-6e \) . Каким станет заряд объединенной капли?

1) \(+e \)
2) \(-e \)
3) \(+11e \)
4) \(-11e \)

10. На рисунке изображены точечные заряженные тела. Тела А и Б имеют одинаковый отрицательный заряд, а тело В равный им по модулю положительный заряд. Каковы модуль и направление равнодействующей силы, действующей на заряд Б со стороны зарядов А и В?

1) ​\(F=F_А+А_В \) ​; направление 2
2) \(F=F_А-А_В \) ; направление 2
3) \(F=F_А+А_В \) ; направление 1
4) \(F=F_А-А_В \) ; направление 1

11. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Сила взаимодействия между электрическими зарядами тем больше, чем больше расстояние между ними.
2) При электризации трением двух тел их суммарный заряд равен нулю.
3) Сила взаимодействия между электрическими зарядами тем больше, чем больше заряды.
4) При соединении двух заряженных тел их общий заряд будет меньше, чем алгебраическая сумма их зарядов до соединения.
5) При трении эбонитовой палочки о мех заряд приобретает только эбонитовая палочка.

12. В процессе трения о шёлк стеклянная линейка приобрела положительный заряд. Как при этом изменилось количество заряженных частиц на линейке и шёлке при условии, что обмен атомами при трении не происходил? Установите соответствие между физическими величинами и их возможными изменениями при этом. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) количество протонов на шёлке
Б) количество протонов на стеклянной линейке
B) количество электронов на шёлке

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась

Ответы

Простые опыты по электризации различных тел иллюстрируют следующие положения.

1. Существуют заряды двух видов: положительные (+) и отрицательные (-). Положительный заряд возникает при трении стекла о кожу или шелк, а отрицательный — при трении янтаря (или эбонита) о шерсть.

2. Заряды (или заряженные тела ) взаимодействуют друг с другом. Одноименные заряды оттал-киваются, а разноименные заряды притягиваются.

3. Состояние электризации можно передать от одного тела к другому, что связано с переносом электрического заряда . При этом телу можно передать больший или меньший заряд, т. е. заряд имеет величину. При электризации трением заряд приобретают оба тела, причем одно — поло-жительный, а другое — отрицательный. Следует подчеркнуть, что абсолютные величины зарядов наэлектризованных трением тел равны, что подтверждается многочисленными измерениями заря-дов с помощью электрометров.

Объяснить, почему тела электризуются (т. е. заряжаются) при трении, стало возможным после открытия электрона и изучения строения атома. Как известно, все вещества состоят из атомов; атомы , в свою очередь, состоят из элементарных частиц — отрицательно заряженных электронов , положительно заряженных протонов и нейтральных частиц - нейтронов . Электроны и протоны являются носителями элементарных (минимальных) электрических зарядов.

Элементарный электрический заряд (е ) — это наименьший электрический заряд, положи-тельный или отрицательный, равный величине заряда электрона:

е = 1,6021892(46) · 10 -19 Кл .

Заряженных элементарных частиц существует много, и почти все они обладают зарядом +e или -e , однако эти частицы весьма недолговечны. Они живут меньше миллионной доли се-кунды. Только электроны и протоны существуют в свободном состоянии неограниченно долго.

Протоны и нейтроны (нуклоны) составляют положительно заряженное ядро атома , вокруг которого вращаются отрицательно заряженные электроны, число которых равно числу протонов, так что атом в целом электроцентралей.

В обычных условиях тела, состоящие из атомов (или молекул), электрически нейтральны. Однако в процессе трения часть электронов, покинувших свои атомы, может перейти с одного тела на другое. Перемещения электронов при этом не превышают размеров межатомных расстояний. Но если тела после трения разъединить, то они окажутся заряженными; тело, которое отдало часть своих электронов, будет заряжено положительно, а тело, которое их приобрело, — отрицательно.

Итак, тела электризуются, т. е. получают электрический заряд, когда они теряют или приоб-ретают электроны. В некоторых случаях электризация обусловлена перемещением ионов. Новые электрические заряды при этом не возникают. Происходит лишь разделение имеющихся заря-дов между электризующимися телами: часть отрицательных зарядов переходит с одного тела на другое.

Определение заряда.

Следует особо подчеркнуть, что заряд является неотъемлемым свойством частицы. Частицу без заряда представить себе можно, но заряд без частицы — нельзя.

Проявляют себя заряженные частицы в притяжении (разноименные заряды) либо в отталкивании (одноименные заряды) с силами, на много порядков превышающими гравитационные. Так, сила электрического притяжения электрона к ядру в атоме водорода в 10 39 раз больше силы гра-витационного притяжения этих частиц. Взаимодействие между заряженными частицами называется электромагнитным взаимодействием , а электрический заряд определяет интенсивность электромагнитных взаимодействий.

В современной физике так определяют заряд:

Электрический заряд — это физическая величина , являющаяся источником электрического поля, посредством которого осуществляется взаимодействие частиц, обладающих зарядом.

1. Элементарный электрический заряд; два вида электрических зарядов; закон сохранения электри­ческого заряда; закон Кулона; электрическое поле: напряжённость электрического поля; линии напря­жённости электрического поля; принцип суперпози­ции электрических полей.

Законы взаимодействия атомов и молекул удается понять и объяснить на основе знаний о строении атома, используя планетарную модель его строения. В центре атома находится положительно заряженное ядро, вокруг которого вращаются по определенным орбитам отрицательно заряженные частицы. Взаимодействие между заряженными частицами называется электромагнитным. Интенсивность электромагнитного взаимодействия определяется физической величиной - электрическим зарядом , который обозначается q.

Единица электрического заряда - кулон (Кл).

1 кулон - это такой электрический заряд, который, проходя через поперечное сечение проводника за 1 с, создает в нем ток силой 1 А.

Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется существованием двух видов зарядов. Один вид заряда назвали положительным, носителем элементарного положительного заряда является протон. Другой вид заряда назвали отрицательным, его носителем является электрон. Элементарный заряд равен Одноимённые заряды отталкиваются, а разноимённые - притягиваются

Заряд частиц всегда представляется числом, кратным величине элементарного заряда.
Закон сохранения электрического заряда
:
Полный заряд замкнутой системы (в которую не входят заряды извне), т. е. алгебраическая сумма зарядов всех тел, остается постоянной: q 1 + q 2 + ... + q n = const.

Электрический заряд не создается и не исчезает, а только переходит от одного тела к другому.
Электризация - это сообщение телу электрического заряда. Электризация может происходить, например, при соприкосновении (трении) разнородных веществ и при облучении. При электризации в теле возникает избыток или недостаток электронов.
В случае избытка электронов тело приобретает отрицательный заряд, в случае недостатка - положительный.
Закон Кулона: модуль силы взаимодействия двух точечных неподвижных электрических зарядов в вакууме прямо пропорционален произведению величин этих зарядов и обратно пропорционален квадрату расстояния между ними. r- расстояние между ними, k - коэффициент пропорциональности, зависящий от выбора системы единиц, в СИ

Величина, показывающая, во сколько раз сила взаимодействия зарядов в вакууме больше, чем в среде, называется диэлектрической проницаемостью среды ε. Для среды с диэлектрической проницаемостью е закон Кулона записывается следующим образом:
В СИ коэффициент k принято записывать следующим образом:
- электрическая постоянная, численно равная

2. Солнечная система. Звёзды и источники их энергии. Современные представления о происхож­дении и эволюции Солнца и звёзд.

1.Солнце - пылающий огненный шар, оно то чрезвычайно активно, то относительно спокойно. Температура поверхности Солнца около 6 000 градусов: при такой темпера­туре все известные нам вещества обращаются в пар. Темпера­тура же в центре Солнца значительно больше: около 15 мил­лионов градусов.

В солнечном спектре было найдено более шестидесяти хими­ческих элементов. Предполагается, что внешние слои Солнца имеют тот же химический состав, что и в момент его образова­ния: около 71% водорода, 27% гелия и 2% других элементов

Солнце условно разделяют на четыре области:

  1. ядро,
  2. лучи­стая зона,
  3. зона конвекции
  4. атмосфера.

Солнечное ядро представляет собой атомную электростан­цию, где солнечная энергия генерируется в реакциях ядерного синтеза. Источником энергии Солнца являются реакции тер­моядерного синтеза. В недрах Солнца происходит превращение ядер водорода в ядра гелия: в результате цепи трех последовательных реакций четыре ядра водорода превращаются в одно ядро гелия. Лучистая зона - зона, где отдельные кванты путешеству­ют сотни тысяч лет, пока достигнут фотосферы. В зоне конвекции циркулирующие потоки газа переносят теплоту от горячих недр наружу. Атмосфера условно разделена на фотосферу, хромосферу и солнечную корону.

Планетами земной группы называют четыре ближайшие к Солнцу планеты: Меркурий, Венеру, Землю и Марс.

Эти планеты характеризуются сравни­тельно небольшими размерами и массой и довольно большой средней плотностью. Общим свойством планет земной группы можно считать и то, что они весьма бедны спутниками.

Меркурий(самая близкая к Солнцу планета ). Меркурий получил свое имя в честь древнеримско­го бога-посланника. Он обращается вокруг Солнца быстрее всех планет со скоростью 47,9 км/с. Меркурий похож на Луну с ее множеством кратеров, гор и морей. Температура ни экваторе Меркурия меняется от 700 К в полдень до 90 К в полночь.

На Меркурии имеются следы атмосферы: зафиксированы гелий, аргон, кислород, углерод и ксенон, но атмосферы нет.

Венера (2 от Солнца) обладает атмосферой, причем очень плотной: давление у поверхности Венеры в 90 раз превышает давление у поверхности Земли. Атмосфера Венеры состоит в основном из углекислого газа,

Поверхность Венеры сухая и каменистая, примерно 60% поверхности занимают сравнительно ровные холмистые рав­нины с хорошо различимыми кратерами. Около 16% поверх­ности - безводные бассейны и долины.

Венера является еще более горячей планетой, чем Мерку­рий, причем из-за плотной атмосферы на ней практически от­сутствуют суточные и годичные колебания температуры - вблизи ее поверхности температура всегда около 450 0 С.

Особенность Венеры состоит в том, что при своем суточном враще­нии она вращается в направлении, противоположном направ­лению суточного вращения всех других планет, кроме Урана. Вращается она медленнее всех других планет, делая один оборот вокруг своей оси только за 243 земных суток.

Земля(3 от Солнца) - единственная планета, в атмосфере которой есть много кислорода: он появился благодаря жизнедеятельности растений.

Особенностью Земли среди других планет земной группы яв­ляется наличие у нее большого естественного спутника - Луны.

Луна очень схожа с Меркурием тем, что у нее тоже (и по тем же причинам) нет атмосферы, и поэтому ее поверхность изрыта огромными ударными кратерами. Интересная особен­ность Луны в том, что она всегда обращена к Земле одной стороной.

Марс(4 от Солнца) имеет две сходные с Землей особенности: во-первых, период его обращения вокруг своей оси составляет чуть больше 24 часов, то есть, почти совпадает с земными сут­ками, во-вторых, ось вращения наклонена к плоскости его орбиты примерно так же. как у Земли, вследствие чего на Марсе, как и на Земле, есть четыре времени года.

Атмосфера Марса слишком разрежена, чтобы задерживать губительные солнечные ультрафиолетовые лучи. Ее состав примерно такой: 95% углекислого газа, 2-3% азота, 1-2% аргона, 0,1-0,4% кислорода, а также следы водяного пара и

красноватый вид планеты (из-за чего она была названа Марсом, именем бога войны) обусловлен наличием большого числа окислов железа в марсианской коре.

Планеты-гиганты.

Планеты-гиганты не имеют твердой поверхности, так как но химическому составу и плотностью напоминают звезды, а их большая масса является причиной нагревания ядер до температуры большей 10000 С. У всех планет-гигантов имеются спутники (исчисляемые десятками), причем некоторые из них превышают своими размерами Луну.

Юпитер(5 от Солнца) был назван в честь мифологического римского царя богов и владыки Вселенной Юпитер представ­ляет собой огромный, быстро вращающийся жидкий шар, увенчанный толстой атмосферой, состоящей в основном из во­дорода и гелия. Юпитер является источником энергии: он излучает почти в два раза больше энергии, чем получает от Солнца. Источником энергии Юпитера является продолжаю­щееся до сих пор сжатие под действием сил тяготения. Так что Юпитер, в некотором смысле, является несостоявшейся (из-за слишком «малой» массы) звездой.

Сатурн (6 от Солнца) особенностью является его роскошное кольцо, открытое еще Галилеем. Сатурн - это многослойный шар с постепенным переходом от жидкости к газу состоящий в основном из водорода и гелия. Вблизи верхней границы облаков температура около 86 К, а в центре экваториальной зоны она доходит до 92 К. Там полыхают молнии и сверкают полярные сияния.

Уран(7 от Солнца) обладает всеми свойствами планет-гигантов, отличие его состоит в том, что осевое вращение Урана происходит в направлении, противоположном направлению вращения всех других планет. Вращается Уран «лежа на боку», поэтому в течение года происходит значительное изменение условий освещенности планеты.

Нептун(8 от Солнца) самая удаленная от Солнца из планет гигантов, поэтому температура очень низкая (менее – 200 0 С). Нептун имеет 3 спутника.

Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием.

Электрический заряд - это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами q или Q .

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

Существует два рода электрических зарядов, условно названных положительными и отрицательными.

Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

Одноименные заряды отталкиваются, разноименные - притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда .

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q 1 + q 2 + q 3 + ... +q n = const.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы - нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e .

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером . Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела - дискретная величина:

Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными . Элементарный заряд e является квантом (наименьшей порцией) электрического заряда. Следует отметить, что в современной физике элементарных частиц предполагается существование так называемых кварков - частиц с дробным зарядом и Однако, в свободном состоянии кварки до сих пор наблюдать не удалось.

В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр ( или электроскоп) - прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1). Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра, электрические заряды одного знака распределяются по стержню и стрелке. Силы электрического отталкивания вызывают поворот стрелки на некоторый угол, по которому можно судить о заряде, переданном стержню электрометра.

Электрометр является достаточно грубым прибором; он не позволяет исследовать силы взаимодействия зарядов. Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Шарлем Кулоном в 1785 г. В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора - крутильных весов (рис. 1.1.2), отличавшихся чрезвычайно высокой чувствительностью. Так, например, коромысло весов поворачивалось на 1° под действием силы порядка 10 -9 Н.

Идея измерений основывалась на блестящей догадке Кулона о том, что если заряженный шарик привести в контакт с точно таким же незаряженным, то заряд первого разделится между ними поровну. Таким образом, был указан способ изменять заряд шарика в два, три и т. д. раз. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами .

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона:

Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3). Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой .

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

Кулон - это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (Ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения .

Коэффициент k в системе СИ обычно записывают в виде:

Где - электрическая постоянная .

В системе СИ элементарный заряд e равен:

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции:

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Рис. 1.1.4 поясняет принцип суперпозиции на примере электростатического взаимодействия трех заряженных тел.

Принцип суперпозиции является фундаментальным законом природы. Однако, его применение требует определенной осторожности, в том случае, когда речь идет о взаимодействии заряженных тел конечных размеров (например, двух проводящих заряженных шаров 1 и 2). Если к системе из двух заряженных шаров поднсти третий заряженный шар, то взаимодействие между 1 и 2 изменится из-за перераспределения зарядов .

Принцип суперпозиции утверждает, что при заданном (фиксированном) распределении зарядов на всех телах силы электростатического взаимодействия между любыми двумя телами не зависят от наличия других заряженных тел.

Электрические заряды, их взаимодействие.

Электрическая цепь постоянного тока, ее основные законы.

Электронная теория строения вещества.

Все вещества в природе состоят из молекул, молекулы из атомов.

Молекула – это наименьшая частица, которой присущи химические свойства данного вещества.

Если разделить молекулу, то вещества не будет, а будут составляющие это вещество элементы: атомы.

Атом – это наименьшая частица, которой присущи химические и физические свойства данного элемента.

Он состоит из:

· положительно заряженного ядра

· вращающихся по разрешенным орбитам отрицательных электронов.

Ядро состоит из положительных протонов и нейтральных нейтронов.

Заряд электрона равен заряду протона, но знаки противоположные. По размеру и массе эти элементарные частицы не равны, протон больше электрона.

Атом электрически нейтральная частица (не заряжена), то есть, сколько в ядре протонов, столько и электронов вращается вокруг ядра, так как один протон может удержать один электрон.

Таким образом разнообразие окружающего нас мира формируется из различных комбинаций всего трех частиц: нейтрона, протона и электрона, которые в свою очередь тоже имеют внутреннее строение.

Валентные электроны – это электроны, которые находятся на крайней орбите. Ими определяются химические способности вещества и его электропроводность.

Электропроводность – это способность вещества проводить электрический ток.

Электрические заряды, их взаимодействие.

Еще в глубокой древности было известно, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Позже было установлено, что аналогичным свойством обладают многие другие вещества. Тела, способные, подобно янтарю, после натирания притягивать легкие предметы, называют наэлектризованными. На телах в таком состоянии имеются электрические заряды, а сами тела называем заряженными.

В природе существуют только два вида зарядов - положительные и отрицательные. Заряды одного знака (одноименные заряды) отталкиваются, заряды разных знаков (разноименные заряды) притягиваются.

Наименьшим (элементарным) зарядом обладают элементарные частицы. Например, протон и позитрон заряжены положительно, электрон и антипротон - отрицательно.

Элементарный отрицательный заряд по величине равен элементарному положительному заряду. В системе СИ заряд измеряется в кулонах (Кл). Величина элементарного заряда е = 1,6-10-19 Кл. В природе нигде и никогда не возникает и не исчезает электрический заряд одного знака. Появление положительного электрического заряда + q всегда сопровождается появлением равного отрицательного электрического заряда - q . Ни положительный, ни отрицательный заряды не могут исчезнуть по отдельности один от другого, они могут лишь взаимно нейтрализовать друг друга, если они равны.

Чтобы получить заряд из нейтрального атома нужно подействовать какой-то силой и оторвать электроны, или присоединить чужие электроны к нейтральному атому. В результате при отрыве (например, при трении) получается положительно заряженный атом, который называется положительный ион , а при присоединении – отрицательный ион.

Ионизация – это процесс образования зарядов из нейтрального атома.



В продолжение темы:
Стрижки и прически

Русская народная сказка "Бычок смоляной бочок" Жанр: народная волшебная сказкаГлавные герои сказки "Бычок смоляной бочок" и их характеристика Дед с бабкой. Простые старики....

Новые статьи
/
Популярные