Совершенствование структурного и технологического обеспечения процессов изготовления лопаток компрессора газотурбинного двигателя в условиях снежнянского машиностроительного завода. Способ изготовления лопаток газотурбинного двигателя

Кандидат технических наук И. ДЕМОНИС, заместитель генерального директора ВИАМа.

Реактивная авиация, которая начала создаваться с 1940-х годов, потребовала разработки нового типа двигателя. Получившие наиболее широкое применение газотурбинные реактивные двигатели произвели революцию в авиационной технике.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Лопатки газовой турбины реактивного двигателя работают в очень тяжелых условиях: их обтекает поток раскаленных газов из камер сгорания.

Охлаждающий воздух, поданный со стороны оси турбины в каналы лопатки, выходит из ее торца.

Стержни-закладки, которые помещают в форму для отливки лопатки газовой турбины. После охлаждения заготовки стержни растворяют и в готовой лопатке остаются каналы для пропускания охлаждающего воздуха.

Воздух, выходящий из отверстий в боковой части лопаток, создает тонкую воздушную пленку, которая изолирует лопатку от горячих газов (слева). Каналы, ведущие к отверстиям, имеют довольно сложную геометрию (справа).

Металл отлитой лопатки застывает в виде кристаллов разного размера, сцепленных недостаточно надежно (слева). После введения в металл модификатора кристаллы стали мелкими и однородными, прочность изделия повысилась (справа).

Так производят направленную кристаллизацию материала лопатки.

Усовершенствовав технологию направленной кристаллизации, удалось вырастить лопатку в виде единого монокристалла.

В монокристаллических лопатках создается охлаждающая полость сложной формы. Новейшие разработки ее конфигурации позволили в полтора раза повысить эффективность охлаждения лопаток.

ДВИГАТЕЛИ И МАТЕРИАЛЫ

Мощность любого теплового двигателя определяет температура рабочего тела - в случае реактивного двигателя это температура газа, вытекающего из камер сгорания. Чем выше температура газа, тем мощнее двигатель, тем больше его тяга, тем выше экономичность и лучше весовые характеристики. В газотурбин ном двигателе имеется воздушный компрессор. Его приводит во вращение газовая турбина, сидящая с ним на одном валу. Компрессор сжимает атмосферный воздух до 6-7 атмосфер и направляет его в камеры сгорания, куда впрыскивается топливо - керосин. Поток вытекающего из камер раскаленного газа - продуктов сгорания керосина - вращает турбину и, вылетая через сопло, создает реактивную тягу, движет самолет. Высокие температуры, возникающие в камерах сгорания, потребовали создания новых технологий и применения новых материалов для конструирования одного из наиболее ответственных элементов двигателя - статорных и роторных лопаток газовой турбины. Они должны в течение многих часов, не теряя механической прочности, выдерживать огромную температуру, при которой многие стали и сплавы уже плавятся. В первую очередь это относится к лопаткам турбины - они воспринимают поток раскаленных газов, нагретых до температур выше 1600 К. Теоретически температура газа перед турбиной может достигать 2200 К (1927 о C). В момент зарождения реактивной авиации - сразу после войны - материалов, из которых можно было изготовить лопатки, способные длительно выдерживать высокие механические нагрузки, в нашей стране не существовало.

Вскоре после окончания Великой Отечественной войны работу по созданию сплавов для изготовле ния турбинных лопаток начала специальная лаборатория в ВИАМе. Ее возглавил Сергей Тимофеевич Кишкин.

В АНГЛИЮ ЗА МЕТАЛЛОМ

Первую отечественную конструкцию турбореактивного двигателя еще до войны создал в Ленинграде конструктор авиационных двигателей Архип Михайлович Люлька. В конце 1930-х годов он был репрессиро ван, но, вероятно, предвидя арест, чертежи двигателя успел закопать во дворе института. Во время войны руководство страны узнало, что немцы уже создали реактивную авиацию (первым самолетом с турбореак тивным двигателем был немецкий "хейнкель" He-178, сконструированный в 1939 году в качестве летающей лаборатории; первым серийным боевым самолетом стал двухмоторный "мессершмит" Me-262 (поступивший на вооружение германских войск в 1942 году. - Прим. ред .). Тогда Сталин вызвал Л. П. Берия, который курировал новые военные разработки, и потребовал найти тех, кто у нас в стране занимается реактивными двигателями. А. М. Люльку быстро освободили и дали ему в Москве на улице Галушкина помещение под первое конструкторское бюро реактивных двигателей. Свои чертежи Архип Михайлович нашел и выкопал, но двигатель по его проекту сразу не получился. Тогда просто взяли купленный у англичан турбореактивный двигатель и повторили его один к одному. Но дело уперлось в материалы, которые отсутствовали в Советском Союзе, однако имелись в Англии, и состав их, конечно, был засекречен. И все-таки расшифровать его удалось.

Приехав в Англию для ознакомления с производством двигателей, С. Т. Кишкин всюду появлялся в ботинках на толстой микропористой подошве. И, посетив с экскурсией завод, где обрабатывали турбинные лопатки, он возле станка, как бы невзначай, наступил на стружку, упавшую с детали. Кусочек металла врезался в мягкую резину, застрял в ней, а потом был вынут и уже в Москве подвергнут тщательному анализу. Результаты анализа английского металла и большие собственные исследования, проведенные в ВИАМе, позволили создать первые жаропрочные никелевые сплавы для турбинных лопаток и, самое главное, разработать основы теории их строения и получения.

Было установлено, что основным носителем жаропрочности таких сплавов служат субмикроскопичес кие частицы интерметаллической фазы на основе соединения Ni 3 Al. Лопатки из первых жаропрочных никелевых сплавов могли длительно работать, если температура газа перед турбиной не превышала 900-1000 К.

ЛИТЬЕ ВМЕСТО ШТАМПОВКИ

Лопатки первых двигателей штамповали из сплава, отлитого в пруток, до формы, отдаленно напоминающей готовое изделие, а затем долго и тщательно обрабатывали на станках. Но здесь возникла неожиданная сложность: чтобы повысить рабочую температуру материала, в него добавили легирующие элементы - вольфрам, молибден, ниобий. Но они сделали сплав настолько твердым, что штамповать его стало невозможно - формовке методами горячей деформации он не поддавался.

Тогда Кишкин предложил лопатки отливать. Конструкторы-мотористы возмутились: во-первых, после литья лопатку все равно придется обрабатывать на станках, а главное - как можно литую лопатку ставить в двигатель? Металл штампованных лопаток очень плотен, прочность его высока, а литой металл остается более рыхлым и заведомо менее прочным, чем отштампованный. Но Кишкин сумел убедить скептиков, и в ВИАМе создали специальные литейные жаропрочные сплавы и технологию литья лопаток. Были проведены испытания, после чего практически все авиационные турбореактивные двигатели стали выпускать с литыми турбинными лопатками.

Первые лопатки были сплошными и долго выдерживать высокую температуру не могли. Требовалось создать систему их охлаждения. Для этого решили делать в лопатках продольные каналы для подачи охлаждающего воздуха от компрессора. Идея эта была не ахти: чем больше воздуха из компрессора уйдет на охлаждение, тем меньше его пойдет в камеры сгорания. Но деваться было некуда - ресурс турбины необходимо увеличить во что бы то ни стало.

Стали конструировать лопатки с несколькими сквозными охлаждающими каналами, расположенны ми вдоль оси лопатки. Однако скоро выяснилось, что такая конструкция малоэффективна: воздух сквозь канал протекает слишком быстро, площадь охлаждаемой поверхности мала, тепло отводится недостаточно. Пытались изменить конфигурацию внутренней полости лопатки, вставив туда дефлектор, который отклоняет и задерживает поток воздуха, или сделать каналы более сложной формы. В какой-то момент специалистами по авиационным двигателям овладела заманчивая идея - создать целиком керамическую лопатку: керамика выдерживает очень высокую температуру, и охлаждать ее не нужно. С тех пор прошло почти пятьдесят лет, но пока никто в мире двигателя с керамическими лопатками так и не сделал, хотя попытки продолжаются.

КАК ДЕЛАЮТ ЛИТУЮ ЛОПАТКУ

Технология изготовления турбинных лопаток называется литьем по выплавляемым моделям. Сначала делают восковую модель будущей лопатки, отливая ее в пресс-форме, в которую предварительно вкладывают кварцевые цилиндрики на место будущих каналов охлаждения (потом стали использовать другие материалы). Модель покрывают жидкой керамической массой. После ее высыхания воск вытапливают горячей водой, а керамическую массу обжигают. Получается форма, выдерживающая температуру расплавленного металла от 1450 до 1500 о С в зависимости от марки сплава. В форму заливают металл, который застывает в виде готовой лопатки, но с кварцевыми стержнями вместо каналов внутри. Стержни удаляют, растворяя в плавиковой кислоте. Эту операцию проводит в герметически закрытом помещении работник в скафандре со шлангом для подачи воздуха. Технология неудобная, опасная и вредная.

Чтобы исключить эту операцию, в ВИАМе начали делать стержни из оксида алюминия с добавкой 10-15% оксида кремния, который растворяется в щелочи. Материал лопаток со щелочью не реагирует, а остатки оксида алюминия удаляют сильной струей воды. Наша лаборатория занималась изготовлением стержней, а сам я начал изучать технологию литья, материалы для керамических форм, сплавы и защитные покрытия готовых изделий и теперь возглавляю это направление исследований.

В повседневной жизни мы привыкли считать литые изделия очень грубыми и шероховатыми. Но нам удалось подобрать такие керамические составы, что форма из них получается совершенно гладкой и отливка механической обработки почти не требуется. Это намного упрощает работу: лопатки имеют очень сложную форму, и обрабатывать их нелегко.

Новые материалы потребовали новых технологий. Какими бы удобными ни были добавки оксида кремния в материал стержней, от него пришлось отказаться. Температура плавления оксида алюминия Al 2 O 3 - 2050 о С, а оксида кремния SiO 2 - только около 1700 о С, и новые жаропрочные сплавы разрушали стержни уже в процессе заливки.

Чтобы форма из оксида алюминия сохраняла прочность, ее обжигают при температуре более высокой, чем температура жидкого металла, который в нее заливают. Кроме того, внутренняя геометрия формы при заливке не должна меняться: стенки лопаток очень тонкие, и размеры должны точно соответствовать расчетным. Поэтому допустимая величина усадки формы не должна превышать 1%.

ПОЧЕМУ ОТКАЗАЛИСЬ ОТ ШТАМПОВАННЫХ ЛОПАТОК

Как уже говорилось, после штамповки лопатку приходилось обрабатывать на станках. При этом 90% металла уходило в стружку. Была поставлена задача: создать такую технологию точного литья, чтобы сразу получался заданный профиль лопатки, а готовое изделие оставалось бы только отполировать и нанести на него теплозащитное покрытие. Не менее важна и конструкция, которая образуется в теле лопатки и выполняет задачу ее охлаждения.

Таким образом, весьма важно сделать лопатку, которая эффективно охлаждается, не снижая температуру рабочего газа, и обладает высокой длительной прочностью. Эту задачу удалось решить, скомпоновав каналы в теле лопатки и выходные отверстия из нее так, чтобы вокруг лопатки возникала тонкая воздушная пленка. При этом разом убивают двух зайцев: раскаленные газы с материалом лопатки не соприкасаются, а следовательно, и не нагревают ее и сами не охлаждаются.

Здесь возникает некоторая аналогия с тепловой защитой космической ракеты. Когда ракета на большой скорости входит в плотные слои атмосферы, начинает испаряться и сгорать так называемое жертвенное покрытие, закрывающее головную часть. Оно берет на себя основной тепловой поток, а продукты его сгорания образуют своего рода защитную подушку. В конструкции турбинной лопатки заложен такой же принцип, только вместо жертвенного покрытия используется воздух. Правда, лопатки нужно защищать еще и от эрозии и от коррозии. Но об этом подробнее см. стр. 54.

Порядок изготовления лопатки таков. Сначала создается никелевый сплав с заданными параметрами по механической прочности и жаропрочности, для чего в никель вводятся легирующие добавки: 6% алюминия, 6-10% вольфрама, тантала, рения и немного рутения. Они позволяют добиться максимальных высокотемпературных характеристик для литых сплавов на основе никеля (есть соблазн еще повысить их, используя больше рения, но он безумно дорог). Перспективным направлением считается использование силицида ниобия, но это - дело далекого будущего.

Но вот сплав залит в форму при температуре 1450 о С и вместе с ней охлаждается. Остывающий металл кристаллизуется, образуя отдельные равноосные, то есть примерно одинакового размера по всем направлениям, зерна. Сами же зерна могут получаться и крупными и мелкими. Сцепляются они ненадежно, и работающие лопатки разрушались по границам зерен и разлетались вдребезги. Ни одна лопатка не могла проработать дольше 50 часов. Тогда мы предложили ввести в материал формы для литья модификатор - кристаллики алюмината кобальта. Они служат центрами, зародышами кристаллизации, ускоряющими процесс образования зерен. Зерна получаются однородными и мелкими. Новые лопатки стали работать по 500 часов. Эта технология, которую разработал Е. Н. Каблов, работает до сих пор, и работает хорошо. А мы в ВИАМе нарабатываем алюминат кобальта тоннами и поставляем его на заводы.

Мощность реактивных двигателей росла, температура и давление газовой струи повышались. И стало ясно, что многозеренная структура металла лопатки в новых условиях работать не сможет. Нужны были другие идеи. Они нашлись, были доведены до стадии технологической разработки и стали называться направленной кристаллизацией. Это значит, что металл, застывая, образовыва ет не равноосные зерна, а длинные столбчатые кристаллы, вытянутые строго вдоль оси лопатки. Лопатка с такой структурой станет очень хорошо сопротивляться излому. Сразу вспоминается старая притча про веник, который переломить не удается, хотя все его прутики по отдельности ломаются без труда.

КАК ПРОИЗВОДЯТ НАПРАВЛЕННУЮ КРИСТАЛЛИЗАЦИЮ

Чтобы кристаллы, образующие лопатку, росли должным образом, форму с расплавленным металлом медленно вынимают из зоны нагрева. При этом форма с жидким металлом стоит на массивном медном диске, охлаждаемом водой. Рост кристаллов начинается снизу и идет вверх со скоростью, практически равной скорости выхода формы из нагревателя. Создавая технологию направленной кристаллизации, пришлось измерить и рассчитать множество параметров - скорость кристаллизации, температуру нагревателя, градиент температуры между нагревателем и холодильником и др. Требовалось подобрать такую скорость движения формы, чтобы столбчатые кристаллы прорастали на всю длину лопатки. При соблюдении всех этих условий вырастают 5-7 длинных столбчатых кристаллов на каждый квадратный сантиметр сечения лопатки. Эта технология позволила создать новое поколение авиационных двигателей. Но мы пошли еще дальше.

Изучив рентгенографическими методами выращенные столбчатые кристаллы, мы поняли, что всю лопатку целиком можно сделать из одного кристалла, который не будет иметь межзёренных границ - наиболее слабых элементов структуры, по которым начинается разрушение. Для этого сделали затравку, которая позволяла только одному кристаллу расти в заданном направлении (кристаллографическая формула такой затравки 0-0-1; это означает, что в направлении оси Z кристалл растет, а в направлении X -Y - нет). Затравку поставили в нижнюю часть формы и залили металл, интенсивно охлаждая его снизу. Вырастающий монокристалл приобретал форму лопатки. Кстати, первая публикация об этой технологии появилась в журнале "Наука и жизнь" еще в 1971 году, в № 1.

Американские инженеры применяли для охлаждения медный водоохлаждаемый кристаллизатор. А мы после нескольких экспериментов заменили его ванной с расплавленным оловом при температуре 600-700 К. Это позволило точнее подбирать необходимый градиент температуры и получать изделия высокого качества. В ВИАМе построили установки с ваннами для выращивания монокристалличес ких лопаток - очень совершенные машины с компьютерным управлением.

В 1990-х годах, когда распался СССР, на территории Восточной Германии остались советские самолеты, в основном истребители МиГ. У них в двигателях стояли лопатки нашего производства. Металл лопаток исследовали американцы, после чего довольно скоро их специалисты приехали в ВИАМ и попросили показать, кто и как его создал. Оказалось, что им была поставлена задача сделать монокристаллические лопатки метровой длины, которую они решить не могли. Мы же сконструировали установку для высокоградиентного литья крупногабаритных лопаток для энергетических турбин и попытались предложить свою технологию Газпрому и РАО "ЕЭС России", но они интереса не проявили. Тем не менее у нас уже практически готова промышленная установка для литья метровых лопаток, и мы постараемся убедить руководство этих компаний в необходимости ее внедрения.

Кстати, турбины для энергетики - это еще одна интересная задача, которую решал ВИАМ. Самолетные двигатели, выработавшие ресурс, стали использовать на компрессорных станциях газопроводов и в электростанциях, питающих насосы нефтепроводов (см. "Наука и жизнь" № ). Сейчас стала актуальной задача создать для этих нужд специальные двигатели, которые работали бы при гораздо меньших температурах и давлении рабочего газа, но гораздо дольше. Если ресурс авиационного двигателя порядка 500 часов, то турбины на нефтегазопроводе должны работать 20-50 тыс. часов. Одним из первых ими начало заниматься самарское конструкторское бюро под руководством Николая Дмитриевича Казнецова.

ЖАРОПРОЧНЫЕ СПЛАВЫ

Монокристаллическая лопатка вырастает не сплошной - внутри у нее имеется полость сложной формы для охлаждения. Совместно с ЦИАМом мы разработали конфигурацию полости, которая обеспечивает коэффициент эффективности охлаждения (отношение температур металла лопатки и рабочего газа), равный 0,8, почти в полтора раза выше, чем у серийных изделий.

Вот эти лопатки мы и предлагаем для двигателей нового поколения. Сейчас температура газа перед турбиной едва дотягивает до 1950 К, а в новых двигателях она дойдет до 2000-2200 К. Для них мы уже разработали высокожаропрочные сплавы, содержащие до пятнадцати элементов таблицы Менделеева, в том числе рений и рутений, и теплозащитные покрытия, в которые входят никель, хром, алюминий и иттрий, а в перспективе - керамические из оксида циркония, стабилизированного оксидом иттрия.

В сплавах первого поколения присутствовало небольшое количество углерода в виде карбидов титана или тантала. Карбиды располагаются по границам кристаллов и понижают прочность сплава. От карбида мы избавились и заменили рением, повысив его концентрацию от 3% в первых образцах до 12% в последних. Запасов рения у нас в стране мало; есть месторождения в Казахстане, но после развала Советского Союза его полностью скупили американцы; остается остров Итуруп, на который претендуют японцы. Зато рутения у нас много, и в новых сплавах мы успешно заменили им рений.

Уникальность ВИАМа заключается в том, что мы умеем разрабатывать и сплавы, и технологию их получения, и методику отливки готового изделия. Во все лопатки вложен огромный труд и знания всех работников ВИАМа.

См. в номере на ту же тему

Для новых поколений газотурбинных двигателей (ГТД) характерной особенностью является замена традиционно используемых дисков с лопатками на моноколёса - блиски (blisk от сокращения английских слов bladed disk) и аналогичные бездисковые кольцевые конструкции - блинги (bling от сокращения английских слов bladed ring).

Для повышения жёсткости, прочности и дополнительного облегчения конструкций типа блинг разработаны технологии кольцевых вставок из металлокомпозитов, например Ti-SiC.

Моноколёса и крыльчатки давно используются в производстве малых ГТД (для вертолётов, бизнес-авиации, наземной техники). Но только в последние годы их начали применять для двигателей военной и гражданской авиации, что обусловлено рядом причин.

  1. Моноколёса позволяют существенно уменьшить размеры обода диска за счёт устранения замковых соединений и снизить массу конструкций типа «блиск» на 30 %, а конструкции «блинг» - на 70 %.
  2. Для создания компактных конструкций ГТД с повышенными удельными параметрами у компрессоров несколько осевых ступеней заменяют одним широкохордным моноколесом или крыльчаткой. Это позволяет увеличить угловую скорость вращения ротора (до 50 — 80 тыс. об/мин) и напорность ступеней.
  3. Для малых диаметров колёс размещение лопаток с хвостовиками на ободе диска становится проблематичным.

Применяемые в отечественных ГТД моноколёса, несмотря на относительно небольшую номенклатуру, значительно отличаются друг от друга конструктивным исполнением. Для изготовления моноколёс в основном применяются титановые сплавы ВТЗ-1, ВТ5-1, ВТ-6, ВТ-8, ВТ-25, а также алюминиевые сплавы АК4-1, АК-6, ВД-17.

Размеры монолитных колёс находятся в диапазоне 170 — 700 мм по наружному диаметру и 25 — 175 мм по ширине. Количество лопаток, даже на колёсах примерно одного диаметра, различно. Высота лопаток составляет 0 — 200 мм, причём для осевых колёс она значительно выше, чем для центробежных.

Толщина лопаток составляет от 0,9 до 3,0 мм, что в значительной степени влияет на жёсткость технологической системы и требует продуманного выбора технологических переходов при обработке, а в некоторых случаях применения промежуточной заливки межлопаточного пространства перед фрезерованием.

Точность изготовления профилей лопаток моноколёс должна соответствовать ОСТ 102571-86 «Предельные отклонения размеров, формы и расположения пера», а шероховатость трактовых поверхностей - Ra = 0,32 — 0,63 мкм.

Почти во всех конструкциях монолитных колёс профиль межлопаточного пространства строится с использованием простых образующих, что облегчает составление управляющих программ обработки. Отечественные 5-координатные фрезерные станки типа ДФ-224Р, ДФ-966, МА 55С5Н, имеющие угол поворота инструмента ±22,5°, позволяют обрабатывать моноколёса с простой формой межлопаточных каналов по 3-4 координатам. Фрезерование лопаток моноколёс, имеющих сложные поверхности, на таких станках с достаточной технологической точностью невозможно, так как обработка должна производиться одновременно по 5 координатам.

Увеличение центробежных сил и, следовательно, контактных давлений и вибраций в замковых соединениях лопаток с диском приводит к фреттинг-коррозии, вызывающей снижение усталостной прочности и ускоряющей появление усталостных трещин, что, в свою очередь, способствует отрыву лопаток и выходу двигателя из строя. Снизить напряжения в соединении лопатки с диском можно благодаря применению высоконапорных моноколёс.

Это связано также с успехами, полученными в области технологии обработки межлопаточных каналов, появлением прогрессивного оборудования и современным проектированием лопаточных машин.

Таким образом, несмотря на высокую трудоёмкость изготовления, моноколёса имеют ряд преимуществ, которые на современном этапе позволяют им успешно конкурировать с осевыми сборными колёсами компрессоров ГТД.

У двигателя пятого поколения EJ-200 ротор компрессора состоит из семи блисков, включая вентиляторный блиск с широкохордными лопатками. Несколько ступеней блисков имеет двигатель серии BRR 700. По мнению специалистов, отработанная технология изготовления моноколёс в итоге оказывается экономически более выгодной, чем традиционное производство дисков и лопаток.

Западные производители газотурбинных двигателей используют для изготовления дисков три базовые технологии:

  • фрезерование лопаток в монолитной заготовке;
  • электрохимическая прошивка межлопаточных каналов после предварительного фрезерования или в монолитной заготовке;
  • сварка лопаток с диском методом линейной сварки трением.

Каждая из этих технологий имеет свои преимущества и недостатки и используется в зависимости от сложности формы лопаток, материала и габаритов.

Фрезерование блисков является традиционным способом. Он особенно эффективен при опытном производстве. В серийном производстве этот метод может быть экономически выгоден при изготовлении титановых блисков сравнительно небольших размеров. Блиски из высокопрочных сталей и никелевых сплавов получать фрезерованием неэффективно вследствие низкой обрабатываемости этих материалов. Фрезерованием невозможно получить очень тонкие лопатки. При изготовлении блиска из титанового сплава диаметром 500 мм, имеющего 85 лопаток с хордой 33 мм, одна лопатка фрезеруется в течение -15 мин. Скорость резания при черновой обработке составляет -100 м/мин, а при чистовой — 300 м/мин. Такие высокие скорости резания, полученные путём оптимизации условий обработки, позволили увеличить производительность фрезерования на 50 %. Шероховатость рабочих поверхностей лопаток после фрезерования составляет Ra =1,5 мкм. После фрезерования ручные доводочные работы не выполняются. В качестве финишной обработки используется виброполирование, а для предварительного прорезания пазов - абразивная струйная резка.

Электрохимическая обработка (ЭХО) является эффективным способом серийного производства блисков средних и малых размеров. К достоинствам ЭХО можно отнести высокую стабильность, производительность, отсутствие износа электродов. При использовании ЭХО не требуется ручная доработка поверхностей. Современное технологическое оборудование позволяет эффективно автоматически контролировать параметры процесса. В то же время, возникает ряд сложностей при подготовке производства. Это касается, в первую очередь, оптимизации формы электрода, выполняемой опытным путём в несколько итераций (до настоящего времени отсутствуют эффективные методики расчёта формы электрода для таких сложных поверхностей, как лопатки). Требуется квалифицированный опытный персонал. Перед чистовой ЭХО пазы между лопатками могут быть предварительно получены фрезерованием или струйно-абразивной резкой.

В настоящее время налажено серийное производство моноколёс диаметром 650 мм, имеющих 40 лопаток с хордой 72 мм и высотой 100 мм, из титанового сплава Ti-6Al-4V. ЭХО выполняется после предварительного чернового фрезерования с припуском 2 мм при плотности тока 0,5 А/мм 2 и подаче 1 мм/мин. Шероховатость поверхности после обработки составляет Rz = 5 — 10 мкм, время обработки одной лопатки - 5 мин.

Линейная сварка трением первоначально была разработана для ремонта повреждённых лопаток, которые нельзя было ремонтировать обычной сваркой. Сегодня этот метод применяется для получения блисков с лопатками большого размера. Каждая лопатка приваривается отдельно.

Моноколёса относятся к наиболее ответственным деталям двигателя. Надёжность и себестоимость их изготовления неразрывно связана с уровнем технологии производства. Разработанный на ММПО «Салют» технологический процесс изготовления моноколёс включает следующие основные операции:

  • заготовка - непрофилированная поковка (шайба);
  • предварительная и окончательная обточка поковок выполняется на токарных станках MDW-20S ;
  • предварительная и окончательная обработка поковок при наличии внецентренных крепёжных отверстий осуществляется на токарно-фрезерных центрах INTEGREX 1060 фирмы «MAZAK» (Япония). При больших габаритах и массе используют станки с вертикальной осью вращения заготовки типа «MORISEIKI» (Япония).

  • предварительное и окончательное фрезерование межло- паточных каналов выполняется на многоцелевых станках с ЧПУ фирмы «STARRAG» (Германия);

  • окончательная обработка межлопаточных каналов (полирование, скругление кромок пера лопаток на пневмомашинах типа СМ21-3-18000 борфрезами и войлочными кругами с накатанным абразивом);
  • контроль геометрии межлопаточных каналов, выполняемый непосредственно на фрезерном станке с ЧПУ, на котором вместо обрабатывающего инструмента устанавливается контрольная измерительная головка, выдающая информацию в системе ЧПУ станка на экран дисплея или распечатку отклонений. Контроль геометрии межлопаточных каналов может выполняться также на контрольно-измерительной машине.
  • С целью автоматизации процесса подготовки управляющих программ, выбора параметров режущего инструмента для предварительного и окончательного фрезерования и оценки формообразования используются математические модели межлопаточных каналов. Фрезерование межлопаточных каналов на станках фирмы «STARRAG» выполняется с достаточной точностью и шероховатостью поверхностей под окончательную безразмерную обработку.

    Технология окончательной безразмерной обработки межлопаточных каналов отрабатывается на вибро-гидравлических машинах в среде свободного абразива, где лопатки получают требуемую шероховатость поверхностей и сохраняют заданный профиль входной и выходной кромок.

    В современных ГТД часто используются осевые компрессоры. Центробежные компрессоры встречаются значительно реже. Основной деталью центробежного компрессора является крыльчатка. По конструктивным признакам различают следующие виды крыльчаток: открытые (заборники), полузакрытые и закрытые. Полузакрытые и закрытые бывают односторонними и двухсторонними.


    Виды крыльчаток: а - открытая; б - полузакрытая; в - закрытая литая; г - закрытая паяная

    Открытая крыльчатка представляет собой ступицу с лопатками (лопастями) без торцевой стенки. Полузакрытая крыльчатка имеет ступицу и диск, к которым примыкают лопатки. Последние бывают прямыми и криволинейными трапецеидального сечения и с постепенным утолщением к ступице.

    У небольших крыльчаток лопатки могут иметь заборные части. В большинстве современных ГТД применяют полузакрытые крыльчатки.

    Закрытые крыльчатки (литые) и сборные (паяные) в авиационных газотурбинных двигателях применяются редко, что обусловлено трудностью их изготовления и недостаточной прочностью.

    Соединение компрессора с валом и передача крутящего момента от вала турбины к крыльчатке осуществляются:

    • креплением вала к крыльчатке с помощью фланцев и шпилек;
    • соединением эвольвентными шлицами;
    • креплением крыльчатки с цапфой штифтами; цапфа имеет торцевые шлицы для передачи крутящего момента.

    Точность обработки отдельных поверхностей и их взаимного расположения характеризуется следующими величинами:

    • посадочные поверхности (поверхности А) и лабиринтные пояски (Д) - 6 — 10-Й квалитеты;
    • наружный диаметр (поверхность Б) - 8 — 10-й квалитеты;
    • остальные поверхности - 11 — 12-й квалитеты;
    • биения наружного диаметра (Б) и торцов (Б, Г) относительно посадочных поверхностей (А) - 0,02 — 0,05 мм;
    • шероховатость лопаток полузакрытых и открытых крыльчаток Ra = 0,16 — 0,08 мкм.

    Большинство открытых и полузакрытых крыльчаток выполняют из алюминиевых деформируемых сплавов АК4-1, АК6-1, БД-17. Если температура крыльчаток в условиях эксплуатации выше 200 °С, то крыльчатки изготавливают из титановых сплавов ВТ-10, ВТ-25У. Для закрытых цельных крыльчаток применяют литейные алюминиевые сплавы, а для сборно-паяных - стали 30ХГСА, 12Х18Н9Т и др.

    Заготовки открытых и полузакрытых крыльчаток обычно получают в закрытых штампах. Заготовки крыльчаток из алюминиевых сплавов отливают в земляные формы, металлические кокили и оболочковые формы.

    Механическая обработка крыльчаток делится на три этапа. При черновом этапе обрабатываются все поверхности крыльчатки и снимается до 70 % всего припуска. Обработка ведётся с большими подачами и глубинами резания. На чистовом этапе снимаются оставшиеся 30 % припуска. Точность и шероховатость поверхности на этом этапе, в основном, соответствует требованиям чертежа. На окончательном этапе полируются лопатки и полки.

    Технологическими базами при обработке открытых и полузакрытых крыльчаток служат наружные поверхности Б, отверстия А и торцы В и Г.

    Основные этапы технологического процесса изготовления полузакрытой крыльчатки:

    • штамповка;
    • точение наружного контура и подрезка торца;
    • ультразвуковой контроль материала заготовки;
    • растачивание отверстия и подрезка другого торца;
    • сверление отверстий под шпильки и развёртывание двух из них;
    • черновое и чистовое точение наружного контура крыльчатки (раздельно правую и левую стороны);
    • координатно-расточная;
    • фрезерование лопаток (предварительное);
    • термообработка (стабилизация);
    • фрезерование лопаток (окончательное);
    • обработка шлицев;
    • окончательное точение наружного контура крыльчатки;
    • балансировка;
    • технический контроль.

    Обработка цилиндрических поверхностей и торцов крыльчаток выполняется на токарных станках с ЧПУ, токарно-револьверных и токарно-фрезерных многоцелевых станках.

    Более всего для изготовления турбинных моноколёс подходит 5-координатный обрабатывающий центр. Диапазон наклона поворотного стола от -60 до +150°. Фрезерование выполняется со спиральным и боковым входом инструмента.

    На ММПП «Салют», освоена и внедрена высокоточная размерная обработка межлопаточных каналов моноколёс компрессоров на швейцарских станках фирмы «Shtarrag», для чего организован специализированный участок, на котором размещены фрезерные станки с ЧПУ, оборудование для перезаточки и контроля режущего инструмента, контрольные приборы.

    Отличительной особенностью этого оборудования является:

    • одновременная обработка четырёх моноколёс;
    • автоматическое бесступенчатое регулирование подачи с помощью системы «адаптивного контроля», специально разработанной для черновой и чистовой обработки;
    • температурная стабилизация (опоры шпинделя, меж- центровое расстояние и т.п.) посредством охлаждения компрессором позволяет добиться максимальной частоты вращения шпинделя и улучшения точности обработки при многошпиндельном, многоместном длительном режиме работы.

Полезная модель относится к области двигателестроения и может быть использована в лопатках газотурбинного двигателя (ГТД) для авиационного, судового и наземного (в составе энергоустановки) применения. В полезной модели решается задача увеличение усталостной прочности по изгибу лопатки за счет уменьшения напряжений растяжения в ее замке во избежание преждевременного разрушения лопатки. Дополнительной задачей является возможность применения предлагаемого решения к охлаждаемым лопаткам ГТД. Поставленная задача решается тем, что лопатка турбины ГТД содержит елочный замок, на котором выполнен концентратор напряжения в виде отверстия. Новым в предлагаемой полезной модели является то, что отверстие расположено вдоль оси лопатки ГТД. Лопатка может содержать канал, который сообщается с отверстием, образуя единый концентратор напряжений. Такое выполнение елочного замка лопатки турбины ГТД увеличивает усталостную прочность по изгибу лопатки за счет уменьшения напряжений растяжения в ее замке, что позволяет избежать преждевременного разрушения лопатки.


Полезная модель относится к двигателестроению и может быть использована в лопатках газотурбинного двигателя (ГТД) для авиационного, судового и наземного (в составе энергоустановки) применения.

Известна конструкция лопатки турбины ГТД, содержащая елочный замок (Скубачевский Г.С. Авиационные газотурбинные двигатели. Конструкция и расчет деталей. - М.: Машиностроение, 1981,с.89, рис.3.27).

Недостатком лопатки с таким замком является то, что в ней не предусмотрено выполнение концентратора напряжений. Отсутствие концентратора ведет при внезапном снятии нагрузки к разрушению не только лопаток, но и диска.

Также известна конструкция лопатки ГТД, содержащая елочный замок и, по крайней мере, один концентратор напряжений в виде отверстия на замке, расположенного поперек оси лопатки (Патент GB 1468470 от 30.03.1977).

К недостатком такой конструкции можно отнести то, что на елочный замок при работе действуют напряжения растяжения, увеличение которых приводит к недостаточной усталостной прочности на изгиб. Результатом является преждевременное разрушение лопатки ГТД. Так же данную конструкцию нельзя использовать в охлаждаемых лопатках, так как возникает утечка охлаждающего воздуха.

Технической задачей полезной модели является увеличение усталостной прочности по изгибу лопатки за счет уменьшения напряжений растяжения в ее замке во избежание преждевременного разрушения лопатки.

Дополнительной технической задачей является возможность применения предлагаемого решения к охлаждаемым лопаткам ГТД.

Поставленная задача решается тем, что лопатка турбины ГТД содержит елочный замок, на котором выполнен концентратор напряжения в виде отверстия.

Новым в предлагаемой полезной модели является то, что отверстие расположено вдоль оси лопатки ГТД.

Кроме того, лопатка может содержать канал, который сообщается с отверстием, образуя единый концентратор напряжений.

На предлагаемом чертеже изображен продольный разрез лопатки турбины ГТД.

Лопатка ГТД включает елочный замок 1. Елочный замок 1 содержит концентратор напряжений в виде отверстия 2, выполненного вдоль оси 3 лопатки.

Лопатка турбины ГТД снабжена каналом 4 для охлаждения, который сообщен с отверстием 2.

При работе колеса турбины ГТД, в случае отказа при внезапном снятии нагрузки, частота вращения диска увеличивается под действием увеличивающихся центробежных сил. В свою очередь центробежные силы увеличивают напряжения сжатия и изгиба в елочном замке 1 и в диске (на чертеже не показан), при этом напряжения растяжения снижаются из-за наличия концентратора напряжений в виде отверстия 2, выполненном на елочном замке 1 вдоль оси лопатки. Это ведет к повышению усталостной прочности на изгиб в замке лопатки, что позволяет избежать преждевременного разрушения лопатки.

Лопатка турбины ГТД работает, как охлаждаемая лопатка, когда воздух проходит по каналу 4 для охлаждения, который сообщен с отверстием 2 для охлаждения елочного замка 1 лопатки.

Такое выполнение лопатки турбины ГТД позволяет увеличить усталостную прочность по изгибу лопатки за счет уменьшения напряжений растяжения в ее замке во избежание преждевременного разрушения лопатки, возможно применение к охлаждаемым лопаткам ГТД.


Формула полезной модели

1. Лопатка турбины газотурбинного двигателя, содержащая елочный замок, на котором выполнен, по крайней мере, один концентратор напряжения в виде отверстия отличающаяся тем, что отверстие выполнено вдоль оси лопатки.

2. Лопатка турбины газотурбинного двигателя по п.1, отличающаяся тем, что лопатка содержит, по крайней мере, один канал для охлаждения, который сообщен с отверстием.

1

В работе рассмотрены способы изготовления компрессорных лопаток высокого давления газотурбинных двигателей. Первым способом является обработка профиля пера лопатки фрезерованием на координатных станках с числовым управлением с последующей ручной доработкой. Вторым способом является электрохимическая обработка, при которой исключены механические и ручные операции обработки пера лопаток. Изучены проблемы изготовления лопаток компрессора способом фрезерования. Представлены актуальные задачи, решение которых позволит повысить точность, качество и исключить ручные шлифовальные и полировальные работы. Приведены преимущества электрохимической обработки. Представлены и проанализированы затраты и трудоемкость на подготовку производства, затраты и трудоемкость на изготовление лопаток. Также в работе представлены результаты измерений компрессорных лопаток. Лучшие результаты по точности и стабильности геометрии профиля пера были получены в результате электрохимической обработки.

электрохимическая обработка

фрезерование

сравнительный анализ

газотурбинный двигатель

1. Галиев В.Э., Фаткуллина Д.З. Перспективный технологический процесс изготовления прецизионных компрессорных лопаток [Текст] / В.Э. Галиев, Д.З. Фаткуллина // Вестник УГАТУ. – 2014. – № 3. – С. 9–105.

2. Нехорошеев М.В. Использование объемного и плоского моделирования двухэлектродной электрохимической ячейки в программе ANSYS [Текст] / М.В. Нехорошеев, Н.Д. Проничев, Г.В. Смирнов // Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение. – 2012. – № 3–3. – С. 98–102.

3. Лунев А.Н. Оптимизация параметров фрезерования лопаток ГТД на станках с ЧПУ [Текст] / А.Н. Лунев, Л.Т. Моисеева, М.В. Соломина // Известия высших учебных заведений. Авиационная техника. – 2007. – № 2. – С. 52–55.

4. Нехорошеев М.В. Автоматизация проектирования технологии электрохимической обработки пера лопаток ГТД на основе компьютерного моделирования процесса формообразования [Текст] / М.В. Нехорошеев., Н.Д. Проничев., Г.В. Смирнов // Известия Самарского научного центра Российской академии наук. – 2013. – Т. 15, № 4–6. – С. 897–900.

5. Павлинич С.П. Перспективы применения импульсной электрохимической обработки в производстве деталей газотурбинных двигателей [Текст] / С.П. Павлинич // Вестник УГАТУ. – 2008. – № 2. – С. 105–115.

6. Производство газотурбинных двигателей [Текст]: справочное пособие / А.М. Абрамов, И.Л. Зеликов, М.Ф. Идзон и др. – М.: Издательство «МАШИНОСТРОЕНИЕ», 1996. – 472 с.

7. Разработка стратегии создания инновационных технологических процессов [Текст]: Учебное пособие / Н.Д. Проничев, А.П. Шулепов, Л.А. Чемпинский, А.В. Мещеряков. – Самара: Самарский государственный аэрокосмический университет, 2011. – 166 с.

8. Технология производства авиационных газотурбинных двигателей [Текст]: Учебное пособие для вузов / Ю.С. Елисеев, А.Г. Бойцов, В.В. Крымов, Л.А. Хворостухин. – М.: Машиностроение, 2003. – 512 с.

9. Толкачев А.В. Повышение производительности вибрационного полирования лопаток компрессора ГТД абразивными гранулами: дисс... канд. тех. наук. – Рыбинск, 2015. – 136 с.

10. Туранов А.В. К методике расчета режимов фрезерования поверхностей лопаток ГТД на станках с ЧПУ [Текст]/А.В. Туранов, Л.Т. Моисеева, А.Н. Лунев // Известия высших учебных заведений. Авиационная техника. – 2005. – № 2. – С. 60–64.

Лопатки компрессора являются ответственными и массовыми деталями газотурбинного двигателя. От правильно выбранной технологии изготовления лопаток будет зависеть ресурс и конечная стоимость двигателя.

Обеспечение заданного ресурса работы лопаток во многом зависит от ряда технологических факторов. Состояние поверхностного слоя лопаток, наличие следов предыдущей обработки (шероховатость поверхности), являющихся концентраторами напряжения, оказывают существенное влияние на длительную и усталостную прочность лопаток при эксплуатации .

Поэтому изготовление лопаток, даже в мелкосерийном производстве, требует применения современных технологических процессов, высокопроизводительного оборудования и автоматизации процесса изготовления и контроля.

Одной из широко применяемых технологий изготовления лопаток компрессора газотурбинного двигателя является фрезерование на координатных станках с последующей ручной доработкой в частности финишных операций . Однако данная технология имеет ряд недостатков:

Низкая точность и производительность;

Необходимость применения ручных операций;

Высокая квалификация рабочего на окончательных ручных операциях по доводке профиля пера лопаток;

Вредные условия для рабочих при выполнении ручных шлифовально-полировальных работ;

Высокая стоимость и быстрый износ режущего инструмента;

Требуется 100 % контроль.

Актуальными задачами изготовления лопаток компрессора газотурбинного двигателя являются:

Автоматизация финишных операций обработки профиля пера. Исключение ручных операций позволит повысить качество и стабильность технологического процесса изготовления лопаток газотурбинного двигателя;

Использование физико-химических способов обработки позволит исключить использование дорогостоящих режущих инструментов и повысить производительность обработки;

Автоматизация контроля лопаток газотурбинных двигателей.

Одним из наиболее эффективных и перспективных направлений изготовления лопаток является электрохимическая обработка. Преимуществами электрохимической обработки являются :

Сокращение сроков изготовления лопаток и возможность эффективной обработки труднообрабатываемых материалов;

Качество поверхности после электрохимической обработки требует минимальной последующей финишной обработки;

Высокая стойкость инструмента;

Кроме этого, отмечается, что лопатки после ЭХО имеют повышенную газодинамическую устойчивость, пониженный разброс частот собственных колебаний, повышенную усталостную прочность за счет уменьшения остаточных напряжений .

Известно, что зарубежные производители ГТД (такие как General Electric Company, MTU Aero Engines GmbH, Volvo Aero Corporation и др.) успешно применяют ЭХО как в качестве операции предварительного формообразования межлопаточного канала моноколес с использованием непрофилированных электродов, так и для размерной обработки пера лопаток профильными электродами инструментами .

В этой области начата работа и достигнуты значительные успехи в НИИД (г. Москва), казанской (КАИ, КГТУ), самарской (САИ) и уфимской (НИИ ПТиТ ЭХО при УГАТУ) школах электрохимической обработки и др. .

Для анализа было выбрано два способа изготовления лопаток компрессора высокого давления газотурбинного двигателя.

Первый способ. Изготовление лопаток на координатно-фрезерных станках, рис. 1. В качестве исходной заготовки используется фрезерованный параллелепипед, изготовленный с точностью 0,1 мм. Формирование замка типа «ласточкин хвост» производится на горизонтально протяжном станке. Далее производится комплексное фрезерование всех элементов проточной части лопатки на координатных станках с числовым управлением с припуском под чистовую обработку. В процессе комплексного фрезерования заготовка базируется за хвостовик типа «ласточкин хвост». Конечным этапом изготовления лопаток является ручная обработка или обработка бесконечной лентой .

Второй способ. Изготовление лопаток на электрохимических станках, рис. 2. В качестве исходной заготовки используется шлифованный параллелепипед, изготовленный с точностью 0,02 мм. В процессе электрохимической обработки происходит формирование трактовых поверхностей с припуском под чистовую обработку. Далее производится формирование хвостовика типа «ласточкин хвост» на горизонтально протяжном станке. Окончательная операция осуществляется на виброшлифовальном станке .

Проанализируем оба способа изготовления компрессорных лопаток. Наиболее полную картину можно получить, сопоставляя затраты и трудоемкость на подготовку производства, затраты и трудоемкость на изготовления детали, а также точность и стабильность изготовления лопаток. Для анализа были изготовлены две партии лопаток вышеупомянутыми способами.

Рис. 1. Основные этапы изготовления лопаток компрессора

Рис. 2. Основные этапы изготовления лопаток компрессора

Таблица 1

Основные затраты на подготовку производства

Плановая трудоемкость н.ч.

Стоимость 1 шт. руб.

В т.ч. материальные затраты

изготовления

переточки

изготовления

переточки

Фрезерование

Фреза № 1

Фреза № 2

Фреза № 3

Фреза № 4

Фреза № 5

Фреза № 6

Фреза № 7

Приспособление

Электрохимическая обработка

Электрод № 1

Электрод № 2

Приспособление

Рис. 3. Стоимость изготовления средств технологического оснащения

Рис. 4. Трудоемкость изготовления средств технологического оснащения

В процессе проектирования технологического процесса существенными факторами являются время и затраты на подготовку производства (табл. 1). В табл. 1 были занесены основные затраты на изготовление оснастки для фрезерования (первый способ) и электрохимической обработки (второй способ) режущих инструментов и электродов инструментов. При рассмотрении табл. 1 становится очевидным, что затраты на материалы и трудоемкость на подготовку производства для электрохимической обработки выше, чем для фрезерования.

Суммарная трудоемкость и стоимость изготовления средств технологического оснащения представлены на рис. 3 и 4.

Трудоемкость и стоимость основных операций изготовления лопаток представлены в табл. 2. Высокие требования по точности изготовления заготовки под электрохимическую обработку ведут к применению дополнительной операции «плоскошлифовальная». Время затраченное на обработку комплекса поверхностей лопаток компрессора электрохимических способом ниже, чем при фрезеровании. Также из табл. 2 видно, что по технологии «фрезерование» требуется применение ручных доводочных работ, что повышает себестоимость готовой продукции.

Суммарная трудоемкость и стоимость изготовления одной лопатки представлены на рис. 4 и 5.

Таблица 2

Трудоемкость и стоимость основных операций изготовления лопатки

Трудоемкость, н.ч.

Стоимость, руб.

Фрезерование

Фрезерование

Фрезерная

93 руб. 90,3 коп.

93 руб. 90,30 коп.

Шлифовальная

26 руб. 27,50 коп.

Протягивание замка

7 руб. 43,10 коп.

7 руб. 43,10 коп.

Обработка трактовых поверхностей

100 руб. 00 коп.

70 руб. 00 коп.

Ручная операция

40 руб. 30,20 коп.

Виброшлифовальная

5 руб. 40 коп.

Рис. 5. Суммарная трудоемкость изготовления одной детали

Рис. 6. Суммарная стоимость изготовления одной детали

На рис. 7 приведен сравнительный анализ затрат на изготовление одной детали. При расчете затрат учитывались затраты на изготовление средств технологического оснащения с последующей их переточкой и ремонтом. Как видно из рисунка, повышение программы выпуска деталей снижает стоимость одной детали. Однако существенные затраты приходятся на лопатки изготовленные по технологии «фрезерование». Данное явление объясняется быстрым износом режущего инструмента.

Практическое отсутствие износа электродов в процессе электрохимической обработки снижает стоимость изготовления лопаток.

Точность изготовления лопаток и стабильность технологических процессов рис. 1 и 2, сведены на рис. 8.

Измерения готовых лопаток проводились на контрольно измерительной машине. Измерения проводились по входным и выходным кромкам в четырех сечениях. Из рисунка следует, что наибольшая точность и повторяемость получения геометрических размеров кромок лопаток достигается методом электрохимической обработки. Существенное повышение стабильности и точности изготовления лопаток методом электрохимической обработки объясняется исключением ручных операций.

В совокупности, рассматривая полученные данные, можно сделать следующие выводы.

Применение в процессе электрохимической обработки более сложной оснастки существенно повышает затраты и время на подготовку производства. Таким образом, фрезерование является более гибким и быстро переналаживаемым способом обработки. Затраты и трудоемкость на подготовку производства обработки фрезерованием ниже чем электрохимической обработки (рис. 1 и 2).

Стоимость изготовления лопаток по технологии «фрезерование» выше, чем при электрохимической обработке. Повышение стоимости связано с тем, что после операции фрезерования требуется применять ручные операции.

Рис. 7. Сравнительный график затрат на изготовление одной детали в зависимости от количества выпущенных лопаток

Рис. 8. Точность изготовления кромок

Затраты на изготовление лопаток по технологии «фрезерование» выше, чем при электрохимической обработке (рис. 7). Существенные затраты составляет покупка дорогого режущего инструмента.

Точность и стабильность электрохимической обработки значительно выше.

Библиографическая ссылка

Валиев А.И. СРАВНИТЕЛЬНЫЙ АНАЛИЗ ИЗГОТОВЛЕНИЯ ЛОПАТОК КОМПРЕССОРА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ // Фундаментальные исследования. – 2017. – № 5. – С. 36-41;
URL: http://fundamental-research.ru/ru/article/view?id=41503 (дата обращения: 28.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

ПАО «Уфимское моторостроительное производственное объединение» (УМПО) запустило на участке перспективного литья лопаток самую крупную в Европе плавильно-заливочную установку лопаточного литья. Размеры оборудования — 9 метров в ширину, 12 — в длину и 8,5 в высоту. Установка предназначена для изготовления заготовок в ходе производства деталей двигателя перспективного гражданского самолета МС-21. Новое оборудование позволяет плавить от 20 до 150 кг специального сплава, что даёт возможности для заливки большого количества лопаток всего за один цикл.

Новая ПЗУ будет активно задействована в реализации совместного проекта УМПО и Московского института стали и сплавов (НИТУ «МИСиС») по разработке и внедрению ресурсоэффективной технологии изготовления пустотелых литых турбинных лопаток. Она будет применяться в производстве не только авиационных газотурбинных двигателей, но и станций перекачки нефти и газа, — рассказал куратор перспективной программы, заместитель начальника управления технического развития и перевооружения Павел Алинкин.

В начале ноября 2015 года, данный проект выиграл субсидию в конкурсе Министерства образования РФ по Постановлению № 218 Правительства РФ. Грант поможет УМПО сократить сроки внедрения инновации в опытное и серийное производство.

Объединение имеет богатый опыт сотрудничества с вузами России по 218-му Постановлению. В настоящее время предприятие работает над еще двумя технологиями: по производству тонкостенных крупногабаритных титановых отливок (с МИСиС и УГАТУ) и деталей из жаропрочного алюминия (с УГАТУ и другими вузами). Два проекта — также с МИСиС и УГАТУ — успешно завершены, их результаты в настоящее время внедрены в производство. Это технология изготовления опоры турбины вертолетного двигателя ВК-2500 и производство моноколес и блисков методом линейной сварки трением.

Впервые в России удалось отлить (метод называется литье по выплавляемым моделям) из сплава алюминида титана инновационные лопатки, которые вдвое легче, чем их аналоги на основе никеля. Технология изготовления новых лопаток уже запущена в производство на Уфимском моторостроительном производственном объединении (ПАО «УМПО»). Ожидается, что лопатки из интерметаллида титана будут использоваться в новом российском двигателе ПД-14 для российского ближне-среднемагистрального пассажирского самолета МС-21. Снижая массу воздушного судна, новая разработка позволит перевозить больше пассажиров с меньшим расходом топлива.

«Сегодня изготовление изделий из алюминида титана очень востребовано в гражданской авиации. Наша разработка не уступает мировым аналогам из Европы и США. Очень важно, что это полностью отечественная разработка: лопатки могут производиться на отечественном оборудовании и из отечественных материалов», — рассказал в интервью руководитель исследовательской группы, заведующий кафедрой «Технологии литейных процессов и художественной обработки материалов» НИТУ «МИСиС», профессор Владимир Белов. Переход на новую технологию позволит заметно снизить массу двигателя, в результате станет возможным перевозить больше пассажиров или грузов на длительные расстояния. Кроме того, новая технология изготовления лопаток значительно уменьшит действующее центробежное напряжение в компрессоре и турбинах авиадвигателей, снизит инерцию турбин и компрессоров, а тем самым позволит уменьшить расход топлива, выбросы в атмосферу парниковых газов.



В продолжение темы:
Стрижки и прически

Для приготовления сырков понадобятся силиконовые формочки среднего размера и силиконовая кисточка. Я использовала молочный шоколад, необходимо брать шоколад хорошего качества,...

Новые статьи
/
Популярные