Геометрическая прогрессия формулы b1. Геометрическая прогрессия на примерах

>>Математика: Геометрическая прогрессия

Для удобства читателя этот параграф строится точно по тому же плану, которого мы придерживались в предыдущем параграфе.

1. Основные понятия.

Определение. Числовую последовательность, все члены которой отличны от 0 и каждый член которой, начиная со второго, получается из предыдущего члена умножением его на одно и то же число называют геометрической прогрессией . При этом число 5 называют знаменателем геометрической прогрессии.

Таким образом, геометрическая прогрессия - это числовая последовательность (b n), заданная рекуррентно соотношениями

Можно ли, глядя на числовую последовательность, определить, является ли она геометрической прогрессией? Можно. Если вы убедились в том, что отношение любого члена последовательности к предыдущему члену постоянно то перед вами- геометрическая прогрессия.
Пример 1.

1, 3, 9, 27, 81,... .
Ь 1 = 1, q = 3.

Пример 2.

Это геометрическая прогрессия, у которой
Пример 3.


Это геометрическая прогрессия, у которой
Пример 4.

8, 8, 8, 8, 8, 8,....

Это геометрическая прогрессия, у которой b 1 - 8, q = 1.

Заметим, что эта последовательность является и арифметической прогрессией (см. пример 3 из § 15).

Пример 5.

2,-2,2,-2,2,-2.....

Это геометрическая прогрессия, у которой b 1 = 2, q = -1.

Очевидно, что геометрическая прогрессия является возрастающей последовательностью, если b 1 > 0, q > 1 (см. пример 1), и убывающей, если b 1 > 0, 0 < q < 1 (см. пример 2).

Для обозначения того, что последовательность (b n) является геометрической прогрессией, иногда бывает удобна следующая запись:


Значок заменяет словосочетание «геометрическая прогрессия».
Отметим одно любопытное и в то же время достаточно очевидное свойство геометрической прогрессии:
Если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е. является геометрической прогрессией.
У второй геометрической прогрессии первый член равен а равен q 2 .
Если в геометрической прогрессии отбросить все члены, следующие за b n , то получится конечная геометрическая прогрессия
В дальнейших пунктах этого параграфа мы рассмотрим наиболее важные свойства геометрической прогрессии.

2. Формула п-го члена геометрической прогрессии.

Рассмотрим геометрическую прогрессию знаменателем q. Имеем:


Нетрудно догадаться, что для любого номера n справедливо равенство


Это - формула n-го члена геометрической прогрессии.

Замечание.

Если вы прочли важное замечание из предыдущего параграфа и поняли его, то попробуйте доказать формулу (1) методом математической индукции подобно тому, как зто было сделано для формулы n-го члена арифметической прогрессии.

Перепишем формулу n-го члена геометрической прогрессии


и введем обозначения: Получим у = mq 2 , или, подробнее,
Аргумент х содержится в показателе степени, поэтому такую функцию называют показательной функцией. Значит, геометрическую прогрессию можно рассматривать как показательную функцию, заданную на множестве N натуральных чисел . На рис. 96а изображен график функции рис. 966 - график функции В обоих случаях имеем изолированные точки (с абсциссами х= 1, х = 2, х = 3 и т.д.), лежащие на некоторой кривой (на обоих рисунках представлена одна и та же кривая, только по-разному расположенная и изображенная в разных масштабах). Эту кривую называют экспонентой. Подробнее о показательной функции и ее графике речь пойдет в курсе алгебры 11-го класса.


Вернемся к примерам 1-5 из предыдущего пункта.

1) 1, 3, 9, 27, 81,... . Это геометрическая прогрессия, у которой Ь 1 = 1, q = 3. Составим формулу n-го члена
2) Это геометрическая прогрессия, у которой Составим формулу n-го члена

Это геометрическая прогрессия, у которой Составим формулу n-го члена
4) 8, 8, 8, ..., 8, ... . Это геометрическая прогрессия, у которой b 1 = 8, q = 1. Составим формулу n-го члена
5) 2, -2, 2, -2, 2, -2,.... Это геометрическая прогрессия, у которой b 1 = 2, q = -1. Составим формулу n-го члена

Пример 6.

Дана геометрическая прогрессия

Во всех случаях в основе решения лежит формула n-го члена геометрической прогрессии

а) Положив в формуле n-го члена геометрической прогрессии n = 6, получим


б) Имеем


Так как 512 = 2 9 , то получаем п - 1 = 9, п = 10.


г) Имеем

Пример 7.

Разность между седьмым и пятым членами геометрической прогрессии равна 48, сумма пятого и шестого членов прогрессии также равна 48. Найти двенадцатый член этой прогрессии.

Первый этап. Составление математической модели .

Условия задачи можно кратко записать так:


Воспользовавшись формулой n-го члена геометрической прогрессии, получим:
Тогда второе условие задачи (b 7 - b 5 = 48) можно записать в виде


Третье условие задачи (b 5 +b 6 = 48) можно записать в виде


В итоге получаем систему двух уравнений с двумя переменными b 1 и q:


которая в сочетании с записанным выше условием 1) и представляет собой математическую модель задачи.

Второй этап.

Работа с составленной моделью. Приравняв левые части обоих уравнений системы, получим:


(мы разделили обе части уравнения на выражение b 1 q 4 , отличное от нуля).

Из уравнения q 2 - q - 2 = 0 находим q 1 = 2, q 2 = -1. Подставив значение q = 2 во второе уравнение системы, получим
Подставив значение q = -1 во второе уравнение системы, получим b 1 1 0 = 48; это уравнение не имеет решений.

Итак, b 1 =1, q = 2 - эта пара является решением составленной системы уравнений.

Теперь мы можем записать геометрическую прогрессию, о которой идет речь в задаче: 1, 2, 4, 8, 16, 32, ... .

Третий этап.

Ответ на вопрос задачи. Требуется вычислить b 12 . Имеем

О т в е т: b 12 = 2048.

3. Формула суммы членов конечной геометрической прогрессии.

Пусть дана конечная геометрическая прогрессия


Обозначим через S n сумму ее членов, т.е.

Выведем формулу для отыскания этой суммы .

Начнем с самого простого случая, когда q = 1. Тогда геометрическая прогрессия b 1 ,b 2 , b 3 ,..., bn состоит из n чисел, равных b 1 , т.е. прогрессия имеет вид b 1 , b 2 , b 3 , ..., b 4 . Сумма этих чисел равна nb 1 .

Пусть теперь q = 1 Для отыскания S n применим искусственный прием: выполним некоторые преобразования выражения S n q. Имеем:

Выполняя преобразования, мы, во-первых, пользовались определением геометрической прогрессии, согласно которому (см. третью строчку рассуждений); во-вторых, прибавили и вычли отчего значение выражения, разумеется, не изменилось (см. четвертую строчку рассуждений); в-третьих, воспользовались формулой n-го члена геометрической прогрессии:


Из формулы (1) находим:

Это - формула суммы n членов геометрической прогрессии (для случая, когда q = 1).

Пример 8.

Дана конечная геометрическая прогрессия

а) сумму членов прогрессии; б) сумму квадратов ее членов.

б) Выше (см. с. 132) мы уже отмечали, что если все члены геометрической прогрессии возвести в квадрат , то получится геометрическая прогрессия с первым членом Ь 2 и знаменателем q 2 . Тогда сумма шести членов новой прогрессии будет вычисляться по

Пример 9.

Найти 8-й член геометрической прогрессии, у которой


Фактически мы доказали следующую теорему.

Числовая, последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого Теорема (и последнего, в случае конечной последовательности),равен произведению предшествующего и последующего членов (характеристическое свойство геометрической прогрессии).

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Числовая последовательность

Итак, сядем и начнем писать какие-нибудь числа. Например:

Писать можно любые числа, и их может быть сколько угодно (в нашем случае их). Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое - второе и так далее до последнего, то есть, можем их пронумеровать. Это и есть пример числовой последовательности:

Числовая последовательность - это множество чисел, каждому из которых можно присвоить уникальный номер.

Например, для нашей последовательности:

Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и -ное число) всегда одно.

Число с номером называетмя -ным членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например,), и каждый член этой последовательности - той же буквой с индексом, равным номеру этого члена: .

В нашем случае:

Самые распространенные виды прогрессии это арифметическая и геометрическая. В этой теме мы поговорим о втором виде - геометрической прогрессии .

Для чего нужна геометрическая прогрессия и ее история возникновения.

Еще в древности итальянский математик монах Леонардо из Пизы (более известный под именем Фибоначчи) занимался решением практических нужд торговли. Перед монахом стояла задача определить, с помощью какого наименьшего количества гирь можно взвесить товар? В своих трудах Фибоначчи доказывает, что оптимальной является такая система гирь: Это одна из первых ситуаций, в которой людям пришлось столкнуться с геометрической прогрессией, о которой ты уже наверное слышал и имеешь хотя бы общее понятие. Как только полностью разберешься в теме, подумай, почему такая система является оптимальной?

В настоящее время, в жизненной практике, геометрическая прогрессия проявляется при вложении денежных средств в банк, когда сумма процентов начисляется на сумму, скопившуюся на счете за предыдущий период. Иными словами, если положить деньги на срочный вклад в сберегательный банк, то через год вклад увеличится на от исходной суммы, т.е. новая сумма будет равна вкладу, умноженному на. Ещё через год уже эта сумма увеличится на, т.е. получившаяся в тот раз сумма вновь умножится на и так далее. Подобная ситуация описана в задачах на вычисление так называемых сложных процентов - процент берется каждый раз от суммы, которая есть на счете с учетом предыдущих процентов. Об этих задачах мы поговорим чуть позднее.

Есть еще много простых случаев, где применяется геометрическая прогрессия. Например, распространение гриппа: один человек заразил человек, те в свою очередь заразили еще по человека, и таким образом вторая волна заражения - человек, а те в свою очередь, заразили еще … и так далее…

Кстати, финансовая пирамида, та же МММ - это простой и сухой расчет по свойствам геометрической прогрессии. Интересно? Давай разбираться.

Геометрическая прогрессия.

Допустим, у нас есть числовая последовательность:

Ты сразу же ответишь, что это легко и имя такой последовательности - с разностью ее членов. А как на счет такого:

Если ты будешь вычитать из последующего числа предыдущее, то ты увидишь, что каждый раз получается новая разница (и т.д.), но последовательность определенно существует и ее несложно заметить - каждое следующие число в раз больше предыдущего!

Такой вид числовой последовательности называется геометрической прогрессией и обозначается.

Геометрическая прогрессия { } - это числовая последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предыдущему, умноженному на одно и то же число . Это число называют знаменателем геометрической прогрессии.

Ограничения, что первый член { } не равен и не случайны. Допустим, что их нет, и первый член все же равен, а q равно, хм.. пусть, тогда получается:

Согласись, что это уже никакая не прогрессия.

Как ты понимаешь, те же самые результаты мы получим, если будет каким-либо числом, отличным от нуля, а. В этих случаях прогрессии просто не будет, так как весь числовой ряд будут либо все нули, либо одно число, а все остальные нули.

Теперь поговорим поподробнее о знаменателе геометрической прогрессии, то есть о.

Повторим: - это число, во сколько раз изменяется каждый последующий член геометрической прогрессии.

Как ты думаешь, каким может быть? Правильно, положительным и отрицательным, но не нулем (мы говорили об этом чуть выше).

Допустим, что у нас положительное. Пусть в нашем случае, а. Чему равен второй член и? Ты без труда ответишь, что:

Все верно. Соответственно, если, то все последующие члены прогрессии имеют одинаковый знак - они положительны .

А что если отрицательное? Например, а. Чему равен второй член и?

Это уже совсем другая история

Попробуй посчитать член данной прогрессии. Сколько у тебя получилось? У меня. Таким образом, если, то знаки членов геометрической прогрессии чередуются. То есть, если ты увидишь прогрессию, с чередующимися знаками у ее членов, значит ее знаменатель на отрицательный. Это знание может помочь тебе проверять себя при решении задач на эту тему.

Теперь немного потренируемся: попробуй определить, какие числовые последовательности являются геометрической прогрессией, а какие арифметической:

Разобрался? Сравним наши ответы:

  • Геометрическая прогрессия - 3, 6.
  • Арифметическая прогрессия - 2, 4.
  • Не является ни арифметической, ни геометрической прогрессиями - 1, 5, 7.

Вернемся к нашей последней прогрессии, а и попробуем так же как и в арифметической найти ее член. Как ты уже догадываешься, есть два способа его нахождения.

Последовательно умножаем каждый член на.

Итак, -ой член описанной геометрической прогрессии равен.

Как ты уже догадываешься, сейчас ты сам выведешь формулу, которая поможет найти тебе любой член геометрической прогрессии. Или ты ее уже вывел для себя, расписывая, как поэтапно находить -ой член? Если так, то проверь правильность твоих рассуждений.

Проиллюстрируем это на примере нахождения -го члена данной прогрессии:

Иными словами:

Найди самостоятельно значение члена заданной геометрической прогрессии.

Получилось? Сравним наши ответы:

Обрати внимание, что у тебя получилось точно такое же число, как и в предыдущем способе, когда мы последовательно умножали на каждый предыдущий член геометрической прогрессии.
Попробуем «обезличить» данную формулу - приведем ее в общий вид и получим:

Выведенная формула верна для всех значений - как положительных, так и отрицательных. Проверь это самостоятельно, рассчитав и члены геометрической прогрессии со следующими условиями: , а.

Посчитал? Сравним полученные результаты:

Согласись, что находить член прогрессии можно было бы так же как и член, однако, есть вероятность неправильно посчитать. А если мы нашли уже -ый член геометрической прогрессии, а, то что может быть проще, чем воспользоваться «обрезанной» частью формулы.

Бесконечно убывающая геометрическая прогрессия.

Совсем недавно мы говорили о том, что может быть как больше, так и меньше нуля, однако, есть особые значения при которых геометрическая прогрессия называется бесконечно убывающей .

Как ты думаешь, почему такое название?
Для начала запишем какую-нибудь геометрическую прогрессию, состоящую из членов.
Допустим, а, тогда:

Мы видим, что каждый последующий член меньше предыдущего в раза, но будет ли какое-либо число? Ты сразу же ответишь - «нет». Вот поэтому и бесконечно убывающая - убывает, убывает, а нулем никогда не становится.

Чтобы четко понять, как это выглядит визуально, давай попробуем нарисовать график нашей прогрессии. Итак, для нашего случая формула приобретает следующий вид:

На графиках нам привычно строить зависимость от, поэтому:

Суть выражения не изменилась: в первой записи у нас была показана зависимость значения члена геометрической прогрессии от его порядкового номера, а во второй записи - мы просто приняли значение члена геометрической прогрессии за, а порядковый номер обозначили не как, а как. Все, что осталось сделать - построить график.
Посмотрим, что у тебя получилось. Вот какой график получился у меня:

Видишь? Функция убывает, стремится к нулю, но никогда его не пересечет, поэтому она бесконечно убывающая. Отметим на графике наши точки, а заодно и то, что обозначает координата и:

Попробуй схематично изобразить график геометрической прогрессии при, если первый ее член также равен. Проанализируй, в чем разница с нашим предыдущим графиком?

Справился? Вот какой график получился у меня:

Теперь, когда ты полностью разобрался в основах темы геометрической прогрессии: знаешь, что это такое, знаешь, как найти ее член, а также знаешь, что такое бесконечно убывающая геометрическая прогрессия, перейдем к ее основному свойству.

Свойство геометрической прогрессии.

Помнишь свойство членов арифметической прогрессии? Да, да, как найти значение определенного числа прогрессии, когда есть предыдущее и последующее значения членов данной прогрессии. Вспомнил? Вот это:

Теперь перед нами стоит точно такой же вопрос для членов геометрической прогрессии. Чтобы вывести подобную формулу, давай начнем рисовать и рассуждать. Вот увидишь, это очень легко, и если ты забудешь, то сможешь вывести ее самостоятельно.

Возьмем еще одну простую геометрическую прогрессию, в которой нам известны и. Как найти? При арифметической прогрессии это легко и просто, а как здесь? На самом деле в геометрической тоже нет ничего сложного - необходимо просто расписать по формуле каждое данное нам значение.

Ты спросишь, и что теперь нам с этим делать? Да очень просто. Для начала изобразим данные формулы на рисунке, и попытаемся сделать с ними различные манипуляции, чтобы прийти к значению.

Абстрагируемся от чисел, которые у нас даны, сосредоточимся только на их выражении через формулу. Нам необходимо найти значение, выделенное оранжевым цветом, зная соседствующие с ним члены. Попробуем произвести с ними различные действия, в результате которых мы сможем получить.

Сложение.
Попробуем сложить два выражения и, мы получим:

Из данного выражения, как ты видишь, мы никак не сможем выразить, следовательно, будем пробовать другой вариант - вычитание.

Вычитание.

Как ты видишь, из этого мы тоже не можем выразить, следовательно, попробуем умножить данные выражения друг на друга.

Умножение.

А теперь посмотри внимательно, что мы имеем, перемножая данные нам члены геометрической прогрессии в сравнении с тем, что необходимо найти:

Догадался о чем я говорю? Правильно, чтобы найти нам необходимо взять квадратный корень от перемноженных друг на друга соседствующих с искомым чисел геометрической прогрессии:

Ну вот. Ты сам вывел свойство геометрической прогрессии. Попробуй записать эту формулу в общем виде. Получилось?

Забыл условие при? Подумай, почему оно важно, например, попробуй самостоятельно просчитать, при. Что получится в этом случае? Правильно, полная глупость так как формула выглядит так:

Соответственно, не забывай это ограничение.

Теперь посчитаем, чему же равно

Правильный ответ - ! Если ты при расчете не забыл второе возможное значение, то ты большой молодец и сразу можешь переходить к тренировке, а если забыл - прочитай то, что разобрано далее и обрати внимание, почему в ответе необходимо записывать оба корня.

Нарисуем обе наши геометрические прогрессии - одну со значением, а другую со значением и проверим, имеют ли обе из них право на существование:

Для того, чтобы проверить, существует ли такая геометрическая прогрессия или нет, необходимо посмотреть, одинаковое ли между всеми ее заданными членами? Рассчитай q для первого и второго случая.

Видишь, почему мы должны писать два ответа? Потому что знак у искомого члена зависит от того, какой - положительный или отрицательный! А так как мы не знаем, какой он, нам необходимо писать оба ответа и с плюсом, и с минусом.

Теперь, когда ты усвоил основные моменты и вывел формулу на свойство геометрической прогрессии, найди, зная и

Сравни полученные ответы с правильными:

Как ты думаешь, а если нам были бы даны не соседние с искомым числом значения членов геометрической прогрессии, а равноудаленные от него. Например, нам необходимо найти, а даны и. Можем ли мы в этом случае использовать выведенную нами формулу? Попробуй точно так же подтвердить или опровергнуть эту возможность, расписывая из чего состоит каждое значение, как ты делал, выводя изначально формулу, при.
Что у тебя получилось?

Теперь опять посмотри внимательно.
и, соответственно:

Из этого мы можем сделать вывод, что формула работает не только при соседствующих с искомым членах геометрической прогрессии, но и с равноудаленными от искомого членами.

Таким образом, наша первоначальная формула приобретает вид:

То есть, если в первом случае мы говорили, что, то сейчас мы говорим, что может быть равен любому натуральному числу, которое меньше. Главное, чтобы был одинаков для обоих заданных чисел.

Потренируйся на конкретных примерах, только будь предельно внимателен!

  1. , . Найти.
  2. , . Найти.
  3. , . Найти.

Решил? Надеюсь, ты был предельно внимателен и заметил небольшой подвох.

Сравниваем результаты.

В первых двух случаях мы спокойно применяем вышеописанную формулу и получаем следующие значения:

В третьем случае при внимательном рассмотрении порядковых номеров данных нам чисел, мы понимаем, что они не равноудалены от искомого нами числа: является предыдущим числом, а удалена на позиции, таким образом применить формулу не предоставляется возможным.

Как же ее решать? На самом деле это не так сложно, как кажется! Давай с тобой распишем, из чего состоит каждое данное нам и искомое числа.

Итак, у нас есть и. Посмотрим, что с ними можно сделать? Предлагаю разделить на. Получаем:

Подставляем в формулу наши данные:

Следующим шагом мы можем найти - для этого нам необходимо взять кубический корень из полученного числа.

А теперь смотрим еще раз что у нас есть. У нас есть, а найти нам необходимо, а он, в свою очередь равен:

Все необходимые данные для подсчета мы нашли. Подставляем в формулу:

Наш ответ: .

Попробуй решить еще одну такую же задачу самостоятельно:
Дано: ,
Найти:

Сколько у тебя получилось? У меня - .

Как ты видишь, по сути, тебе необходимо запомнить лишь одну формулу - . Все остальные ты без какого-либо труда можешь вывести самостоятельно в любой момент. Для этого просто напиши на листочке самую простую геометрическую прогрессию и распиши, чему согласно вышеописанной формуле равно каждое ее число.

Сумма членов геометрической прогрессии.

Теперь рассмотрим формулы, которые позволяют нам быстро посчитать сумму членов геометрической прогрессии в заданном промежутке:

Чтобы вывести формулу суммы членов конечной геометрической прогрессии, умножим все части вышестоящего уравнения на. Получим:

Посмотри внимательно: что общего в последних двух формулах? Правильно, общие члены, например и так далее, кроме первого и последнего члена. Давай попробуем вычесть из 2-го уравнения 1-ое. Что у тебя получилось?

Теперь вырази через формулу члена геометрической прогрессии и подставь полученное выражение в нашу последнюю формулу:

Сгруппируй выражение. У тебя должно получиться:

Все, что осталось сделать - выразить:

Соответственно, в этом случае.

А что если? Какая формула работает тогда? Представь себе геометрическую прогрессию при. Что она из себя представляет? Правильно ряд одинаковых чисел, соответственно формула будет выглядеть следующим образом:

Как и по арифметической, так и по геометрической прогрессии существует множество легенд. Одна из них - легенда о Сете, создателе шахмат.

Многие знают, что шахматная игра была придумана в Индии. Когда индусский царь познакомился с нею, он был восхищен ее остроумием и разнообразием возможных в ней положений. Узнав, что она изобретена одним из его подданных, царь решил лично наградить его. Он вызвал изобретателя к себе и приказал просить у него все, что он пожелает, пообещав исполнить даже самое искусное желание.

Сета попросил время на размышления, а когда на другой день Сета явился к царю, он удивил царя беспримерной скромностью своей просьбы. Он попросил выдать за первую клетку шахматной доски пшеничное зерно, за вторую пшеничных зерна, за третью, за четвертую и т.д.

Царь разгневался, и прогнал Сета, сказав, что просьба слуги недостойна царской щедрости, но пообещал, что слуга получит свои зерна за все клетки доски.

А теперь вопрос: используя формулу суммы членов геометрической прогрессии, посчитай, сколько зерен должен получить Сета?

Начнем рассуждать. Так как по условию за первую клетку шахматной доски Сета попросил пшеничное зерно, за вторую, за третью, за четвертую и т.д., то мы видим, что в задаче речь идет о геометрической прогрессии. Чему равно в этом случае?
Правильно.

Всего клеток шахматной доски. Соответственно, . Все данные у нас есть, осталось только подставить в формулу и посчитать.

Чтобы представить хотя бы приблизительно «масштабы» данного числа, преобразуем, используя свойства степени:

Конечно, если ты хочешь, то можешь взять калькулятор и посчитать, что за число в итоге у тебя получится, а если нет, придется поверить мне на слово: итоговым значением выражения будет.
То есть:

квинтильонов квадрильонов триллиона миллиарда миллионов тысяч.

Фух) Если желаете представить себе огромность этого числа, то прикиньте, какой величины амбар потребовался бы для вмещения всего количества зерна.
При высоте амбара м и ширине м длина его должна была бы простираться на км, - т.е. вдвое дальше, чем от Земли до Солнца.

Если бы царь был бы силен в математике, то он мог бы предложить самому ученому отсчитывать зерна, ведь чтобы отсчитать миллион зерен, ему бы понадобилось не менее суток неустанного счета, а учитывая, что необходимо отсчитать квинтильонов, зерна пришлось бы отсчитывать всю жизнь.

А теперь решим простую задачку на сумму членов геометрической прогрессии.
Ученик 5 А класса Вася, заболел гриппом, но продолжает ходить в школу. Каждый день Вася заражает двух человек, которые, в свою очередь, заражают еще двух человек и так далее. Всего в классе человек. Через сколько дней гриппом будет болеть весь класс?

Итак, первый член геометрической прогрессии это Вася, то есть человек. -ой член геометрической прогрессии, это те два человека, которых он заразил в первый день своего прихода. Общая сумма членов прогрессии равна количеству учащихся 5А. Соответственно, мы говорим о прогрессии, в которой:

Подставим наши данные в формулу суммы членов геометрической прогрессии:

Весь класс заболеет за дней. Не веришь формулам и числам? Попробуй изобразить «заражение» учеников самостоятельно. Получилось? Смотри, как это выглядит у меня:

Посчитай самостоятельно, за сколько дней ученики заболели бы гриппом, если каждый заражал бы по человека, а в классе училось человек.

Какое значение у тебя получилось? У меня получилось, что все начали болеть спустя дня.

Как ты видишь, подобная задача и рисунок к ней напоминает пирамиду, в которой каждый последующий «приводит» новых людей. Однако, рано или поздно настает такой момент, когда последние не могут никого привлечь. В нашем случае, если представить, что класс изолирован, человек из замыкают цепочку (). Таким образом, если бы человек были вовлечены в финансовую пирамиду, в которой деньги давались в случае, если ты приведешь двух других участников, то человек (или в общем случае) не привели бы никого, соответственно, потеряли бы все, что вложили в эту финансовую аферу.

Все, что было сказано выше, относится к убывающей или возрастающей геометрической прогрессии, но, как ты помнишь, у нас есть особый вид - бесконечно убывающая геометрическая прогрессия. Как же считать сумму ее членов? И почему у данного вида прогрессии есть определенные особенности? Давай разбираться вместе.

Итак, для начала посмотрим еще раз на вот этот рисунок бесконечно убывающей геометрической прогрессии из нашего примера:

А теперь посмотрим на формулу суммы геометрической прогрессии, выведенную чуть ранее:
или

К чему у нас стремится? Правильно, на графике видно, что оно стремится к нулю. То есть при, будет почти равно, соответственно, при вычислении выражения мы получим почти. В связи с этим, мы считаем, что при подсчете суммы бесконечно убывающей геометрической прогрессии, данной скобкой можно пренебречь, так как она будет равна.

- формула сумма членов бесконечно убывающей геометрической прогрессии.

ВАЖНО! Формулу суммы членов бесконечно убывающей геометрической прогрессии мы используем только в том случае, если в условии в явном виде указано, что нужно найти сумму бесконечного числа членов.

Если указано конкретное число n, то пользуемся формулой суммы n членов, даже если или.

А теперь потренируемся.

  1. Найди сумму первых членов геометрической прогрессии с и.
  2. Найди сумму членов бесконечно убывающей геометрической прогрессии с и.

Надеюсь, ты был предельно внимателен. Сравним наши ответы:

Теперь ты знаешь о геометрической прогрессии все, и настала пора переходить от теории к практике. Самые распространенные задачи на геометрическую прогрессию, встречающиеся на экзамене - это задачи на вычисление сложных процентов. Именно о них и пойдет речь.

Задачи на вычисление сложных процентов.

Ты наверняка слышал о так называемой формуле сложных процентов. Понимаешь ли ты, что она значит? Если нет, давай разбираться, так как осознав сам процесс, ты сразу поймешь, причем здесь геометрическая прогрессия.

Все мы ходим в банк и знаем, что существуют разные условия по вкладам: это и срок, и дополнительное обслуживание, и процент с двумя различными способами его начисления - простым и сложным.

С простыми процентами все более или менее понятно: проценты начисляются один раз в конце срока вклада. То есть, если мы говорим о том, что мы кладем 100 рублей на год под, то зачислятся только в конце года. Соответственно, к окончанию вклада мы получим рублей.

Сложные проценты — это такой вариант, при котором происходит капитализация процентов , т.е. их причисление к сумме вклада и последующий расчет дохода не от первоначальной, а от накопленной суммы вклада. Капитализация происходит не постоянно, а с некоторой периодичностью. Как правило, такие периоды равны и чаще всего банки используют месяц, квартал или год.

Допустим, что мы кладем все те же рублей по годовых, но с ежемесячной капитализацией вклада. Что у нас получается?

Все ли тебе здесь понятно? Если нет, давай разбираться поэтапно.

Мы принесли в банк рублей. К концу месяца у нас на счете должна появиться сумма, состоящая из наших рублей плюс процентов по ним, то есть:

Согласен?

Мы можем вынести за скобку и тогда мы получим:

Согласись, эта формула уже больше похожа на написанную нами в начале. Осталось разобраться с процентами

В условии задачи нам сказано про годовых. Как ты знаешь, мы не умножаем на - мы переводим проценты в десятичные дроби, то есть:

Верно? Сейчас ты спросишь, а откуда взялось число? Очень просто!
Повторюсь: в условии задачи сказано про ГОДОВЫЕ проценты, начисление которых происходит ЕЖЕМЕСЯЧНО . Как ты знаешь, в году месяцев, соответственно, банк будет начислять нам в месяц часть от годовых процентов:

Осознал? А теперь попробуй написать, как будет выглядеть эта часть формулы, если я скажу, что проценты начисляются ежедневно.
Справился? Давай сравним результаты:

Молодец! Вернемся к нашей задаче: напиши, сколько будет начислено на наш счет на второй месяц, с учетом, что проценты начисляются на накопленную сумму вклада.
Вот что получилось у меня:

Или, иными словами:

Я думаю, что ты уже заметил закономерность и увидел во всем этом геометрическую прогрессию. Напиши, чему будет равен ее член, или, иными словами, какую сумму денежных средств мы получим в конце месяца.
Сделал? Проверяем!

Как ты видишь, если ты кладешь деньги в банк на год под простой процент, то ты получишь рублей, а если под сложный - рублей. Выгода небольшая, но так происходит только в течение -го года, а вот на более длительный период капитализация намного выгодней:

Рассмотрим еще один тип задач на сложные проценты. После того, в чем ты разобрался, это будет для тебя элементарно. Итак, задача:

Компания «Звезда» начала инвестировать в отрасль в 2000 году, имея капитал долларов. Каждый год, начиная с 2001 года, она получает прибыль, которая составляет от капитала предыдущего года. Сколько прибыли получит компания «Звезда» по окончанию 2003 года, если прибыль из оборота не изымалась?

Капитал компании «Звезда» в 2000 году.
- капитал компании «Звезда» в 2001 году.
- капитал компании «Звезда» в 2002 году.
- капитал компании «Звезда» в 2003 году.

Либо мы можем написать кратко:

Для нашего случая:

2000 год, 2001 год, 2002 год и 2003 год.

Соответственно:
рублей
Заметь, в данной задаче у нас нет деления ни на, ни на, так как процент дан ЕЖЕГОДНЫЙ и начисляется он ЕЖЕГОДНО. То есть, читая задачу на сложные проценты, обрати внимание, какой процент дан, и в какой период он начисляется, и только потом приступай к вычислениям.
Теперь ты знаешь о геометрической прогрессии все.

Тренировка.

  1. Найдите член геометрической прогрессии, если известно, что, а
  2. Найдите сумму первых членов геометрической прогрессии, если известно, что, а
  3. Компания «МДМ Капитал» начала инвестировать в отрасль в 2003 году, имея капитал долларов. Каждый год, начиная с 2004 года, она получает прибыль, которая составляет от капитала предыдущего года. Компания «МСК Денежные потоки» стала инвестировать в отрасль в 2005 году в размере 10000 долларов, начиная получать прибыль с 2006 года в размере. На сколько долларов капитал одной компании больше другой по окончанию 2007 года, если прибыль из оборота не изымалась?

Ответы:

  1. Так как в условии задачи не сказано, что прогрессия бесконечная и требуется найти сумму конкретного числа ее членов, то расчет идет по формуле:

  2. Компания «МДМ Капитал»:

    2003, 2004, 2005, 2006, 2007 года.
    - увеличивается на 100%, то есть в 2 раза.
    Соответственно:
    рублей
    Компания «МСК Денежные потоки»:

    2005, 2006, 2007 года.
    - увеличивается на, то есть в раза.
    Соответственно:
    рублей
    рублей

Подведем итоги.

1) Геометрическая прогрессия { } - это числовая последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предыдущему, умноженному на одно и то же число. Это число называют знаменателем геометрической прогрессии.

2) Уравнение членов геометрической прогрессии - .

3) может принимать любые значения, кроме и.

  • если, то все последующие члены прогрессии имеют одинаковый знак - они положительны ;
  • если, то все последующие члены прогрессии чередуют знаки;
  • при - прогрессия называется бесконечно убывающей.

4) , при - свойство геометрической прогрессии (соседствующие члены)

либо
, при (равноудаленные члены)

При нахождении не стоит забывать о том, что ответа должно быть два .

Например,

5) Сумма членов геометрической прогрессии вычисляется по формуле:
или


или

ВАЖНО! Формулу суммы членов бесконечно убывающей геометрической прогрессии мы используем только в том случае, если в условии в явном виде указано, что нужно найти сумму бесконечного числа членов.

6) Задачи на сложные проценты также вычисляются по формуле -го члена геометрической прогрессии, при условии, что денежные средства из оборота не изымались:

ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ. КОРОТКО О ГЛАВНОМ

Геометрическая прогрессия { } - это числовая последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предыдущему, умноженному на одно и то же число. Это число называют знаменателем геометрической прогрессии.

Знаменатель геометрической прогрессии может принимать любые значения, кроме и.

  • Если, то все последующие члены прогрессии имеют одинаковый знак - они положительны ;
  • если, то все последующие члены прогрессии чередуют знаки;
  • при - прогрессия называется бесконечно убывающей.

Уравнение членов геометрической прогрессии - .

Сумма членов геометрической прогрессии вычисляется по формуле:
или

Если прогрессия является бесконечно убывающей, то:

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Инструкция

10, 30, 90, 270...

Требуется найти знаменатель геометрической прогрессии.
Решение:

1 вариант. Возьмем произвольный член прогрессии (например, 90) и разделим его на предыдущий (30): 90/30=3.

Если известна сумма нескольких членов геометрической прогрессии или сумма всех членов убывающей геометрической прогрессии, то для нахождения знаменателя прогрессии воспользуйтесь соответствующими формулами:
Sn = b1*(1-q^n)/(1-q), где Sn – сумма n первых членов геометрической прогрессии и
S = b1/(1-q), где S – сумма бесконечно убывающей геометрической прогрессии (сумма всех членов прогрессии со знаменателем меньшим единицы).
Пример.

Первый член убывающей геометрической прогрессии равен единице, а сумма всех ее членов равна двум.

Требуется определить знаменатель этой прогрессии.
Решение:

Подставьте данные из задачи в формулу. Получится:
2=1/(1-q), откуда – q=1/2.

Прогрессия представляет собой последовательность чисел. В геометрической прогрессии каждый последующий член получается умножением предыдущего на некоторое число q, называемое знаменателем прогрессии.

Инструкция

Если известно два соседних члена геометрической b(n+1) и b(n), чтобы получить знаменатель, надо число с большим разделить на предшествующее ему: q=b(n+1)/b(n). Это следует из определения прогрессии и ее знаменателя. Важным условием является неравенство нулю первого члена и знаменателя прогрессии, иначе считается неопределенной.

Так, между членами прогрессии устанавливаются следующие соотношения: b2=b1 q, b3=b2 q, … , b(n)=b(n-1) q. По формуле b(n)=b1 q^(n-1) может быть вычислен любой член геометрической прогрессии, в которой известен знаменатель q и член b1. Также каждый из прогрессии по модулю равен среднему своих соседних членов: |b(n)|=√, отсюда прогрессия и получила свое .

Аналогом геометрической прогрессии является простейшая показательная функция y=a^x, где x стоит в показателе степени, a – некоторое число. В этом случае знаменатель прогрессии совпадает с первым членом и равен числу a. Под значением функции y можно понимать n-й член прогрессии, если аргумент x принять за натуральное число n (счетчик).

Еще одно важное свойство геометрической прогрессии, которое и дало геометрической прогрессии

Рассмотрим теперь вопрос о суммировании бесконечной геометрической прогрессии. Назовем частичной суммой данной бесконечной прогрессии сумму ее первых членов. Обозначим частичную сумму символом

Для каждой бесконечной прогрессии

можно составить (также бесконечную) последовательность ее частичных сумм

Пусть последовательность при неограниченном возрастании имеет предел

В этом случае число S, т. е. предел частичных сумм прогрессии, называют суммой бесконечной прогрессии. Мы докажем, что бесконечная убывающая геометрическая прогрессия всегда имеет сумму, и выведем формулу для этой суммы (можно также показать, что при бесконечная прогрессия не имеет суммы, не существует).

Запишем выражение частичной суммы как суммы членов прогрессии по формуле (91.1) и будем рассматривать предел частичной суммы при

Из теоремы п. 89 известно, что для убывающей прогрессии ; поэтому, применяя теорему о пределе разности, найдем

(здесь также использовано правило: постоянный множитель выносится за знак предела). Существование доказано, и одновременно получена формула суммы бесконечно убывающей геометрической прогрессии:

Равенство (92.1) можно также писать в виде

Здесь может казаться парадоксальным, что сумме бесконечного множества слагаемых приписывается вполне определенное конечное значение.

Можно привести наглядную иллюстрацию в пояснение такого положения. Рассмотрим квадрат со стороной, равной единице (рис. 72). Разделим этот квадрат горизонтальной линией на две равные части и верхнюю часть приложим к нижней так, чтобы образовался прямоугольник со сторонами 2 и . После этого правую половину этого прямоугольника снова разделим горизонтальной линией пополам и верхнюю часть приложим к нижней (как показано на рис. 72). Продолжая этот процесс, мы все время преобразуем исходный квадрат с площадью, равной 1, в равновеликие фигуры (принимающие вид лестницы с утоньшающимися ступеньками).

При бесконечном продолжении этого процесса вся площадь квадрата разлагается в бесконечное чьсло слагаемых - площадей прямоугольников с основаниями, равными 1, и высотами Площади прямоугольников как раз образуют при этом бесконечную убывающую прогрессию ее сумма

т. е., как и следовало ожидать, равна площади квадрата.

Пример. Найти суммы следующих бесконечных прогрессий:

Решение, а) Замечаем, что у этой прогрессии Поэтому по формуле (92.2) находим

б) Здесь значит, по той же формуле (92.2) имеем

в) Находим, что у этой прогрессии Поэтому данная прогрессия не имеет суммы.

В п. 5 было показано применение формулы суммы членов бесконечно убывающей прогрессии к обращению периодической десятичной дроби в обыкновенную дробь.

Упражнения

1. Сумма бесконечно убывающей геометрической прогрессии равна 3/5, а сумма ее первых четырех членов равна 13/27. Найти первый член и знаменатель прогрессии.

2. Найти четыре числа, образующие знакочередующуюся геометрическую прогрессию, у которой второй член меньше первого на 35, а третий больше четвертого на 560.

3. Показать, что если последовательность

образует бесконечно убывающую геометрическую прогрессию, то и последовательность

при любом образует бесконечно убывающую геометрическую прогрессию. Сохранится ли это утверждение при

Вывести формулу для произведения членов геометрической прогрессии.

Геометрическая прогрессия не менее важная в математике по сравнению с арифметической. Геометрической прогрессией называют такую последовательность чисел b1, b2,..., b[n] каждый следующий член которой, получается умножением предыдущего на постоянное число. Это число, которое также характеризует скорость роста или убывания прогрессии называют знаменателем геометрической прогрессии и обозначают

Для полного задания геометрической прогрессии кроме знаменателя необходимо знать или определить первый ее член. Для положительного значения знаменателя прогрессия является монотонной последовательностью, причем если это последовательность чисел является монотонно убывающей и при монотонно возрастающей. Случай, когда знаменатель равен единице на практике не рассматривается, поскольку имеем последовательность одинаковых чисел, а их суммирование не вызывает практического интереса

Общий член геометрической прогрессии вычисляют по формуле

Сумма n первых членов геометрической прогрессии определяют по формуле

Рассмотрим решения классических задач на геометрическую прогрессию. Начнем для понимания с простейших.

Пример 1. Первый член геометрической прогрессии равен 27, а ее знаменатель равен 1/3. Найти шесть первых членов геометрической прогрессии.

Решение: Запишем условие задачи в виде

Для вычислений используем формулу n-го члена геометрической прогрессии

На ее основе находим неизвестные члены прогрессии

Как можно убедиться, вычисления членов геометрической прогрессии несложные. Сама прогрессия будет выглядеть следующим образом

Пример 2. Даны три первых члена геометрической прогрессии : 6; -12; 24. Найти знаменатель и седьмой ее член.

Решение: Вычисляем знаменатель геомитрической прогрессии исходя из его определения

Получили знакопеременную геометрическую прогрессию знаменатель которой равен -2. Седьмой член вычисляем по формуле

На этом задача решена.

Пример 3. Геометрическая прогрессия задана двумя ее членами . Найти десятый член прогрессии.

Решение:

Запишем заданные значения через формулы

По правилам нужно было бы найти знаменатель, а затем искать нужное значение, но для десятого члена имеем

Такую же формулу можно получить на основе нехитрых манипуляций с входными данными. Разделим шестой член ряда на другой, в результате получим

Если полученное значение умножить на шестой член, получим десятый

Таким образом, для подобных задач с помощью несложных преобразований в быстрый способ можно отыскать правильное решение.

Пример 4. Геометрическая прогрессия задано рекуррентными формулами

Найти знаменатель геометрической прогрессии и сумму первых шести членов.

Решение:

Запишем заданные данные в виде системы уравнений

Выразим знаменатель разделив второе уравнение на первое

Найдем первый член прогрессии из первого уравнения

Вычислим следующие пять членов для нахождения суммы геометрической прогрессии



В продолжение темы:
Детская мода

Инструктаж по ПДД, ТБ и ОБЖ, ППБ во время летних каникул. Завершился учебный год, и начинаются долгожданные летние каникулы. Все мы готовимся к лету, с нетерпением его...

Новые статьи
/
Популярные