Что такое сопротивление изменениям и как с ним работать? Электрическое сопротивление и проводимость Обозначение переменных резисторов на схемах

В этой статье мы рассмотрим резистор и его взаимодействие с напряжением и током, проходящим через него. Вы узнаете, как рассчитать резистор с помощью специальных формул. В статье также показано, как специальные резисторы могут быть использованы в качестве датчика света и температуры.

Представление об электричестве

Новичок должен быть в состоянии представить себе электрический ток. Даже если вы поняли, что электричество состоит из электронов, движущихся по проводнику, это все еще очень трудно четко представить себе. Вот почему я предлагаю эту простую аналогию с водной системой, которую любой желающий может легко представить себе и понять, не вникая в законы.

Обратите внимание, как электрический ток похож на поток воды из полного резервуара (высокого напряжения) в пустой(низкое напряжение). В этой простой аналогии воды с электрическим током, клапан аналогичен токоограничительному резистору.
Из этой аналогии можно вывести некоторые правила, которые вы должны запомнить навсегда:
- Сколько тока втекает в узел, столько из него и вытекает
- Для того чтобы протекал ток, на концах проводника должны быть разные потенциалы.
- Количество воды в двух сосудах можно сравнить с зарядом батареи. Когда уровень воды в разных сосудах станет одинаковым, она перестанет течь, и при разряде аккумулятора, разницы между электродами не будет и ток перестанет течь.
- Электрический ток будет увеличиваться при уменьшении сопротивления, как и скорость потока воды будет увеличиваться с уменьшением сопротивления клапана.

Я мог бы написать гораздо больше умозаключений на основе этой простой аналогии, но они описаны в законе Ома ниже.

Резистор

Резисторы могут быть использованы для контроля и ограничения тока, следовательно, основным параметром резистора является его сопротивление, которое измеряется в Омах . Не следует забывать о мощности резистора, которая измеряется в ваттах (Вт), и показывает, какое количество энергии резистор может рассеять без перегрева и выгорания. Важно также отметить, что резисторы используются не только для ограничения тока, они также могут быть использованы в качестве делителя напряжения для получения низкого напряжения из большего. Некоторые датчики основаны на том, что сопротивление варьируется в зависимости от освещённости, температуры или механического воздействия, об этом подробно написано в конце статьи.

Закон Ома

Понятно, что эти 3 формулы выведены из основной формулы закона Ома, но их надо выучить для понимания более сложных формул и схем. Вы должны быть в состоянии понять и представить себе смысл любой из этих формул. Например, во второй формуле показано, что увеличение напряжения без изменения сопротивления приведет к росту тока. Тем не менее, увеличение тока не увеличит напряжение (хотя это математически верно), потому что напряжение - это разность потенциалов, которая будет создавать электрический ток, а не наоборот (см. аналогию с 2 емкостями для воды). Формула 3 может использоваться для вычисления сопротивления токоограничивающего резистора при известном напряжении и токе. Это лишь примеры, показывающие важность этого правила. Вы сами узнаете, как использовать их после прочтения статьи.

Последовательное и параллельное соединение резисторов

Понимание последствий параллельного или последовательного подключения резисторов очень важно и поможет вам понять и упростить схемы с помощью этих простых формул для последовательного и параллельного сопротивления:

В этом примере схемы, R1 и R2 соединены параллельно, и могут быть заменены одним резистором R3 в соответствии с формулой:

В случае с 2-мя параллельно соединёнными резисторами, формулу можно записать так:

Кроме того, что эту формулу можно использовать для упрощения схем, она может быть использована для создания номиналов резисторов, которых у вас нет.
Отметим также, что значение R3 будет всегда меньше, чем у 2 других эквивалентных резисторов, так как добавление параллельных резисторов обеспечивает дополнительные пути
электрическому току, снижая общее сопротивление цепи.

Последовательно соединённые резисторы могут быть заменены одним резистором, значение которого будет равно сумме этих двух, в связи с тем, что это соединение обеспечивает дополнительное сопротивление тока. Таким образом, эквивалентное сопротивление R3 очень просто вычисляется: R 3 =R 1 +R 2

В интернете есть удобные он-лайн калькуляторы для расчета и соединения резисторов.

Токоограничивающий резистор

Самая основная роль токоограничивающих резисторов - это контроль тока, который будет протекать через устройство или проводник. Для понимания их работы, давайте сначала разберём простую схему, где лампа непосредственно подключена к 9В батареи. Лампа, как и любое другое устройство, которое потребляет электроэнергию для выполнения определенной задачи (например, светоизлучение) имеет внутреннее сопротивление, которое определяет его текущее потребление. Таким образом, отныне, любое устройство может быть заменено на эквивалентное сопротивление.

Теперь, когда лампа будет рассматриваться как резистор, мы можем использовать закон Ома для расчета тока, проходящего через него. Закон Ома гласит, что ток, проходящий через резистор равен разности напряжений на нем, поделенное на сопротивление резистора: I=V/R или точнее так:
I=(V 1 -V 2)/R
где (V 1 -V 2) является разностью напряжений до и после резистора.

Теперь обратите внимание на рисунок выше, где добавлен токоограничительный резистор. Он будет ограничивать ток идущий к лампе, как это следует из названия. Вы можете контролировать, количество тока протекающего через лампу, просто выбрав правильное значение R1. Большой резистор будет сильно снижать ток, а небольшой резистор менее сильно (так же, как в нашей аналогии с водой).

Математически это запишется так:

Из формулы следует, что ток уменьшится, если значение R1 увеличится. Таким образом, дополнительное сопротивление может быть использовано для ограничения тока. Однако важно отметить, что это приводит к нагреву резистора, и вы должны правильно рассчитать его мощность, о чем будет написано дальше.

Вы можете воспользоваться он-лайн калькулятором для .

Резисторы как делитель напряжения

Как следует из названия, резисторы могут быть использованы в качестве делителя напряжения, другими словами, они могут быть использованы для уменьшения напряжения путем деления его. Формула:

Если оба резистора имеют одинаковое значение (R 1 =R 2 =R), то формулу можно записать так:

Другой распространенный тип делителя, когда один резистор подключен к земле (0В), как показано на рисунке 6B.
Заменив Vb на 0 в формуле 6А, получаем:

Узловой анализ

Теперь, когда вы начинаете работать с электронными схемами, важно уметь их анализировать и рассчитывать все необходимые напряжения, токи и сопротивления. Есть много способов для изучения электронных схем, и одним из наиболее распространенных методов является узловой, где вы просто применяете набор правил, и рассчитываете шаг за шагом все необходимые переменные.

Упрощенные правила узлового анализа

Определение узла

Узел – это любая точка соединения в цепи. Точки, которые связаны друг с другом, без других компонентов между ними рассматриваются как единый узел. Таким образом, бесконечное число проводников в одну точку считаются одним узлом. Все точки, которые сгруппированы в один узел, имеют одинаковые напряжения.

Определение ветви

Ветвь представляет собой набор из 1 и более компонентов, соединенных последовательно, и все компоненты, которые подсоединены последовательно к этой цепи, рассматриваются как одна ветвь.

Все напряжения обычно измеряются относительно земли напряжение на которой всегда равно 0 вольт.

Ток всегда течет от узла с более высоким напряжением на узел с более низким.

Напряжение на узле может быть высчитано из напряжения около узла, с помощью формулы:
V 1 -V 2 =I 1 *(R 1)
Перенесем:
V 2 =V 1 -(I 1 *R 1)
Где V 2 является искомым напряжением, V 1 является опорным напряжением, которое известно, I 1 ток, протекающий от узла 1 к узлу 2 и R 1 представляет собой сопротивление между 2 узлами.

Точно так же, как и в законе Ома, ток ответвления можно определить, если напряжение 2х соседних узлах и сопротивление известно:
I 1 =(V 1 -V 2)/R 1

Текущий входящий ток узла равен текущему выходящему току, таким образом, это можно записать так: I 1 + I 3 =I 2

Важно, чтобы вы были в состоянии понимать смысл этих простых формул. Например, на рисунке выше, ток протекает от V1 до V2, и, следовательно, напряжение V2 должно быть меньше, чем V1.
Используя соответствующие правила в нужный момент, вы сможете быстро и легко проанализировать схему и понять её. Это умение достигается практикой и опытом.

Расчет необходимой мощности резистора

При покупке резистора вам могут задать вопрос: "Резисторы какой мощности вы хотите?" или могут просто дать 0.25Вт резисторы, поскольку они являются наиболее популярными.
Пока вы работаете с сопротивлением больше 220 Ом, и ваш блок питания обеспечивает 9В или меньше, можно работать с 0.125Вт или 0.25Вт резисторами. Но если напряжение более 10В или значение сопротивления менее 220 Ом, вы должны рассчитать мощность резистора, или он может сгореть и испортить прибор. Чтобы вычислить необходимую мощность резистора, вы должны знать напряжение через резистор (V) и ток, протекающий через него (I):
P=I*V
где ток измеряется в амперах (А), напряжение в вольтах (В) и Р - рассеиваемая мощность в ваттах (Вт)

На фото предоставлены резисторы различной мощности, в основном они отличаются размером.

Разновидности резисторов

Резисторы могут быть разными, начиная от простых переменных резисторов (потенциометров) до реагирующих на температуру, свет и давление. Некоторые из них будут обсуждаться в этом разделе.

Переменный резистор (потенциометр)

На рисунке выше показано схематическое изображение переменного резистора. Он часто упоминается как потенциометр, потому что он может быть использован в качестве делителя напряжения.

Они различаются по размеру и форме, но все работают одинаково. Выводы справа и слева эквивалентны фиксированной точке (например, Va и Vb на рисунке выше слева), а средний вывод является подвижной частью потенциометра, а также используется для изменения соотношения сопротивления на левом и правом выводах. Следовательно, потенциометр относится к делителям напряжения, которым можно выставить любое напряжение от Va к Vb.
Кроме того, переменный резистор может быть использован как тока ограничивающий путем соединения выводов Vout и Vb, как на рисунке выше (справа). Представьте себе, как ток будет течь через сопротивление от левого вывода к правому, пока не достигнет подвижной части, и пойдет по ней, при этом, на вторую часть пойдет очень мало тока. Таким образом, вы можете использовать потенциометр для регулировки тока любых электронных компонентов, например лампы.

LDR (светочувствительные резисторы) и термисторы

Есть много датчиков основанных на резисторах, которые реагируют на свет, температуру или давление. Большинство из них включаются как часть делителя напряжения, которое изменяется в зависимости от сопротивления резисторов, изменяющегося под воздействием внешних факторов.



Фоторезистор (LDR)

Как вы можете видеть на рисунке 11A, фоторезисторы различаются по размеру, но все они являются резисторами, сопротивление которых уменьшается под воздействием света и увеличивается в темноте. К сожалению, фоторезисторы достаточно медленно реагируют на изменение уровня освещённости, имеют достаточно низкую точность, но очень просты в использовании и популярны. Как правило, сопротивление фоторезисторов может варьироваться от 50 Ом при солнце, до более чем 10МОм в абсолютной темноте.

Как мы уже говорили, изменение сопротивления изменяет напряжение с делителя. Выходное напряжение можно рассчитать по формуле:

Если предположить, что сопротивление LDR изменяется от 10 МОм до 50 Ом, то V out будет соответственно от 0.005В до 4.975В.

Термистор похож на фоторезистор, тем не менее, термисторы имею гораздо больше типов, чем фоторезисторы, например, термистор может быть либо с отрицательным температурным коэффициентом (NTC), сопротивление которого уменьшается с повышением температуры, или положительным температурным коэффициентом (PTC), сопротивление которого будет увеличиваться с повышением температуры. Сейчас термисторы реагируют на изменение параметров среды очень быстро и точно.

Про определение номинала резистора используя цветовую маркировку можно почитать .

Каждое вещество имеет свое удельное сопротивление. Причем сопротивление будет зависеть от температуры проводника. Убедимся в этом, проведя следующий опыт.

Пропустим ток через стальную спираль. В цепи со спиралью подключим последовательно амперметр . Он покажет некоторое значение. Теперь будем нагревать спираль в пламени газовой горелки. Значение силы тока, которое покажет амперметр, уменьшится. То есть, сила тока будет зависеть от температуры проводника.

Изменение сопротивления в зависимости от температуры

Пусть при температуре 0 градусов, сопротивление проводника равняется R0, а при температуре t сопротивление равно R, тогда относительное изменение сопротивления будет прямо пропорционально изменению температуры t:

  • (R-R0)/R=a*t.

В данной формуле а - коэффициент пропорциональности, который называют еще температурным коэффициентом. Он характеризует зависимость сопротивления, которым обладает вещество, от температуры.

Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании его на 1 Кельвин.

Для всех металлов температурный коэффициент больше нуля. При изменениях температуры он будет незначительно меняться. Поэтому, если изменение температуры невелико, то температурный коэффициент можно считать постоянным, и равным среднему значению из этого интервала температур.

Растворы электролитов с ростом температуры сопротивление уменьшается. То есть для них температурный коэффициент будет меньше нуля.

Сопротивление проводника зависит от удельного сопротивления проводника и от размеров проводника. Так как размеры проводника при нагревании меняются незначительно, то основной составляющей изменения сопротивления проводника является удельное сопротивление.

Зависимость удельного сопротивления проводника от температуры

Попытаемся найти зависимость удельного сопротивления проводника от температуры.

Подставим в полученную выше формулу значения сопротивлений R=p*l/S R0=p0*l/S.

Получим следующую формулу:

  • p=p0(1+a*t).

Данная зависимость представлена на следующем рисунке.

Попробуем разобраться, почему увеличивается сопротивление

Когда мы повышаем температуру, то увеличивается амплитуда колебаний ионов в узлах кристаллической решетки. Следовательно, свободные электроны будут чаще с ними сталкиваться. При столкновении они будет терять направленность своего движения. Следовательно, сила тока будет уменьшаться.

  • 1.5. Теорема Остроградского-Гаусса для электрического поля в вакууме
  • 1.6. Работа электрического поля по перемещению электрического заряда. Циркуляция вектора напряженности электрического поля
  • 1.7. Энергия электрического заряда в электрическом поле
  • 1.8. Потенциал и разность потенциалов электрического поля. Связь напряженности электрического поля с его потенциалом
  • 1.8.1. Потенциал и разность потенциалов электрического поля
  • 1.8.2. Связь напряженности электрического поля с его потенциалом
  • 1.9. Эквипотенциальные поверхности
  • 1.10. Основные уравнения электростатики в вакууме
  • 1.11.2. Поле бесконечно протяженной, однородно заряженной плоскости
  • 1.11.3. Поле двух бесконечно протяженных, равномерно заряженных плоскостей
  • 1.11.4. Поле заряженной сферической поверхности
  • 1.11.5. Поле объёмно заряженного шара
  • Лекция 2. Проводники в электрическом поле
  • 2.1. Проводники и их классификация
  • 2.2. Электростатическое поле в полости идеального проводника и у его поверхности. Электростатическая защита. Распределение зарядов в объеме проводника и по его поверхности
  • 2.3. Электроемкость уединенного проводника и ее физический смысл
  • 2.4. Конденсаторы и их емкость
  • 2.4.1. Емкость плоского конденсатора
  • 2.4.2. Емкость цилиндрического конденсатора
  • 2.4.3. Емкость сферического конденсатора
  • 2.5. Соединения конденсаторов
  • 2.5.1. Последовательное соединение конденсаторов
  • 2.5.2. Параллельное и смешанное соединения конденсаторов
  • 2.6. Классификация конденсаторов
  • Лекция 3. Статическое электрическое поле в веществе
  • 3.1. Диэлектрики. Полярные и неполярные молекулы. Диполь в однородном и неоднородном электрических полях
  • 3.1.1. Диполь в однородном электрическом поле
  • 3.1.2. Диполь в неоднородном внешнем электрическом поле
  • 3.2. Свободные и связанные (поляризационные) заряды в диэлектриках. Поляризация диэлектриков. Вектор поляризации (поляризованность)
  • 3.4. Условия на границе раздела двух диэлектриков
  • 3.5. Электрострикция. Пьезоэлектрический эффект. Сегнетоэлектрики, их свойства и применение. Электрокалорический эффект
  • 3.6. Основные уравнения электростатики диэлектриков
  • Лекция 4. Энергия электрического поля
  • 4.1. Энергия взаимодействия электрических зарядов
  • 4.2. Энергия заряженных проводников, диполя во внешнем электрическом поле, диэлектрического тела во внешнем электрическом поле, заряженного конденсатора
  • 4.3. Энергия электрического поля. Объемная плотность энергии электрического поля
  • 4.4. Силы, действующие на макроскопические заряженные тела, помещенные в электрическое поле
  • Лекция 5. Постоянный электрический ток
  • 5.1. Постоянный электрический ток. Основные действия и условия существования постоянного тока
  • 5.2. Основные характеристики постоянного электрического тока: величина /сила/ тока, плотность тока. Сторонние силы
  • 5.3. Электродвижущая сила (эдс), напряжение и разность потенциалов. Их физический смысл. Связь между эдс, напряжением и разностью потенциалов
  • Лекция 6. Классическая электронная теория проводимости металлов. Законы постоянного тока
  • 6.1. Классическая электронная теория электропроводности металлов и ее опытные обоснования. Закон Ома в дифференциальной и интегральной формах
  • 6.2. Электрическое сопротивление проводников. Изменение сопротивления проводников от температуры и давления. Сверхпроводимость
  • 6.3. Соединения сопротивлений: последовательное, параллельное, смешанное. Шунтирование электроизмерительных приборов. Добавочные сопротивления к электроизмерительным приборам
  • 6.3.1. Последовательное соединение сопротивлений
  • 6.3.2. Параллельное соединение сопротивлений
  • 6.3.3. Шунтирование электроизмерительных приборов. Добавочные сопротивления к электроизмерительным приборам
  • 6.4. Правила (законы) Кирхгофа и их применение к расчету простейших электрических цепей
  • 6.5. Закон Джоуля-Ленца в дифференциальной и интегральной формах
  • Лекция 7. Электрический ток в вакууме, газах и жидкостях
  • 7.1. Электрический ток в вакууме. Термоэлектронная эмиссия
  • 7.2. Вторичная и автоэлектронная эмиссия
  • 7.3. Электрический ток в газе. Процессы ионизации и рекомбинации
  • 7.3.1. Несамостоятельная и самостоятельная проводимость газов
  • 7.3.2. Закон Пашена
  • 7.3.3. Виды разрядов в газах
  • 7.3.3.1. Тлеющий разряд
  • 7.3.3.2. Искровой разряд
  • 7.3.3.3. Коронный разряд
  • 7.3.3.4. Дуговой разряд
  • 7.4. Понятие о плазме. Плазменная частота. Дебаевская длина. Электропроводность плазмы
  • 7.5. Электролиты. Электролиз. Законы электролиза
  • 7.6. Электрохимические потенциалы
  • 7.7. Электрический ток через электролиты. Закон Ома для электролитов
  • 7.7.1. Применение электролиза в технике
  • Лекция 8. Электроны в кристаллах
  • 8.1. Квантовая теория электропроводности металлов. Уровень Ферми. Элементы зонной теории кристаллов
  • 8.2. Явление сверхпроводимости с точки зрения теории Ферми-Дирака
  • 8.3. Электропроводность полупроводников. Понятие о дырочной проводимости. Собственные и примесные полупроводники. Понятие о p-n – переходе
  • 8.3.1. Собственная проводимость полупроводников
  • 8.3.2. Примесные полупроводники
  • 8.4. Электромагнитные явления на границе раздела сред
  • 8.4.1. P-n – переход
  • 8.4.2. Фотопроводимость полупроводников
  • 8.4.3. Люминесценция вещества
  • 8.4.4. Термоэлектрические явления. Закон Вольта
  • 8.4.5. Эффект Пельтье
  • 8.4.6. Явление Зеебека
  • 8.4.7. Явление Томсона
  • Заключение
  • Библиографический список Основной
  • Дополнительный
  • 6.2. Электрическое сопротивление проводников. Изменение сопротивления проводников от температуры и давления. Сверхпроводимость

    Из выражения видно, что удельная электропроводимость проводников, а, следовательно, удельное электросопротивление и сопротивление зависят от материала проводника и его состояния. Состояние проводника может изменяться в зависимости от различных внешних факторов давления (механических напряжений, внешних сил, сжатия, растяжения и т.д., т.е. факторов, влияющих на кристаллическое строение металлических проводников) и температуры.

    Электрическое сопротивление проводников (сопротивление) зависит от формы, размеров, материала проводника, давления и температуры:

    . (6.21)

    При этом зависимость удельного электрического сопротивления проводников и сопротивления проводников от температуры, как было установлено экспериментально, описывается линейными законами:

    ; (6.22)

    , (6.23)

    где  t и  o , R t и R o - соответственно удельные сопротивления и сопротивления проводника при t = 0 o C;

    или
    . (6.24)

    Из формулы (6.23) температурная зависимость сопротивления проводников определяется соотношениями:

    , (6.25)

    где T – термодинамическая температура.

    График зависимости сопротивления проводников от температуры представлен на рисунке 6.2. График зависимости удельного сопротивления металлов от абсолютной температуры T представлен на рисунке 6.3.

    Согласно классической электронной теории металлов в идеальной кристаллической решетке (идеальном проводнике) электроны движутся, не испытывая электрического сопротивления ( = 0). С точки зрения современных представлений, причинами, вызывающими появление электрического сопротивления в металлах, являются посторонние примеси и дефекты кристаллической решетки, а также тепловое движение атомов металла, амплитуда которых зависит от температуры.

    Правило Матиссена утверждает, что зависимость удельного электрического сопротивления от температуры (T) является сложной функцией, которая состоит из двух независимых слагаемых:

    , (6.26)

    где  ост – остаточное удельное сопротивление;

     ид – идеальное удельное сопротивление металла, которое соответствует сопротивлению абсолютно чистого металла и определяется лишь тепловыми колебаниями атомов.

    На основании формул (6.25) удельное сопротивление идеального металла должно стремиться к нулю, когда T  0 (кривая 1 на рис. 6.3). Однако удельное сопротивление как функция температуры является суммой независимых слагаемых  ид и  ост. Поэтому в связи с наличием примесей и других дефектов кристаллической решетки металла удельное сопротивление (T) при понижении температуры стремится к некоторой постоянной конечной величине  ост (кривая 2 на рис. 6.3). Иногда переходя минимум, несколько повышается при дальнейшем понижении температуры (кривая 3 на рис. 6.3). Величина остаточного удельного сопротивления зависит от наличия дефектов в решетке и содержания примесей, возрастает при увеличении их концентрации. Если количество примесей и дефектов кристаллической решетки свести к минимуму, то остается еще один фактор, влияющий на электрическое удельное сопротивление металлов, - тепловое колебание атомов, которое, как утверждает квантовая механика, не прекращается и при температуре абсолютного нуля. В результате этих колебаний решетка перестает быть идеальной, и в пространстве возникают переменные силы, действие которых приводит к рассеянию электронов, т.е. возникновению сопротивления.

    В последствии было обнаружено, что сопротивление некоторых металлов (Al, Pb, Zn и др.) и их сплавов при низких температурах T (0,1420 К), называемых критическими, характерных для каждого вещества, скачкообразно уменьшается до нуля, т.е. металл становится абсолютным проводником. Впервые это явление, называемое сверхпроводимостью, обнаружено в 1911 г. Г. Камерлинг-Оннесом для ртути. Было установлено, что при Т = 4,2 К ртуть, по-видимому, полностью теряет сопротивление электрическому току. Уменьшение сопротивления происходит очень резко в интервале нескольких сотых градуса. В дальнейшем потеря сопротивления наблюдалась и у других чистых веществ и у многих сплавов. Температуры перехода в сверхпроводящее состояние различны, но всегда очень низки.

    Возбудив электрический ток в кольце из сверхпроводящего материала (например, с помощью электромагнитной индукции), можно наблюдать, что его сила в течение нескольких лет не уменьшается. Это позволяет найти верхний предел удельного сопротивления сверхпроводников (менее 10 -25 Омм), что гораздо меньше, чем удельное сопротивление меди при низкой температуре (10 -12 Омм). Поэтому принимается, что электрическое сопротивление сверхпроводников равно нулю. Сопротивление до перехода в сверхпроводящее состояние бывает самым различным. Многие из сверхпроводников при комнатной температуре имеют довольно высокое сопротивление. Переход в сверхпроводящее состояние совершается всегда очень резко. У чистых монокристаллов он занимает интервал температур меньший, чем одна тысячная градуса.

    Сверхпроводимостью среди чистых веществ обладают алюминий, кадмий, цинк, индий, галлий. В процессе исследований оказалось, что структура кристаллической решетки, однородность и чистота материала оказывают значительное влияние на характер перехода в сверхпроводящее состояние. Это видно, например, на рисунке 6.4, на котором приведены экспериментальные кривые перехода в сверхпроводящее состояние олова различной чистоты (кривая 1 – монокристаллическое олово; 2 – поликристаллическое олово; 3 – поликристаллическое олово с примесями).

    В 1914 г. К. Оннес обнаружил, что сверхпроводящее состояние разрушается магнитным полем, когда магнитная индукция B превосходит некоторое критическое значение. Критическое значение индукции зависит от материала сверхпроводника и температуры. Критическое поле, разрушающее сверхпроводимость, может быть создано и самим сверхпроводящим током. Поэтому имеется критическая сила тока, при которой сверхпроводимость разрушается.

    В 1933 г. Мейсснер и Оксенфельд обнаружили, что внутри сверхпроводящего тела полностью отсутствует магнитное поле. При охлаждении сверхпроводника, находящегося во внешнем постоянном магнитном поле, в момент перехода в сверхпроводящее состояние магнитное поле полностью вытесняется из его объема. Этим сверхпроводник отличается от идеального проводника, у которого при падении удельного сопротивления до нуля индукция магнитного поля в объеме должна сохраняться без изменения. Явление вытеснения магнитного поля из объема проводника называется эффектом Мейсснера. Эффект Мейсснера и отсутствие электрического сопротивления являются важнейшими свойствами сверхпроводника.

    Отсутствие магнитного поля в объеме проводника позволяет заключить из общих законов магнитного поля, что в нем существует только поверхностный ток. Он физически реален и поэтому занимает некоторый тонкий слой вблизи поверхности. Магнитное поле тока уничтожает внутри проводника внешнее магнитное поле. В этом отношении сверхпроводник ведет себя формально как идеальный диамагнетик. Однако он не является диамагнетиком, поскольку внутри его намагниченность (вектор намагничивания) равна нулю.

    Чистые вещества, у которых наблюдается явление сверхпроводимости, немногочисленны. Чаще сверхпроводимость наблюдается у сплавов. У чистых веществ имеет место только эффект Мейсснера, а у сплавов не происходит полного выталкивания магнитного поля из объема (наблюдается частичный эффект Мейсснера).

    Вещества, в которых наблюдается полный эффект Мейсснера, называются сверхпроводниками первого рода, а частичный – сверхпроводниками второго рода.

    У сверхпроводников второго рода в объеме имеются круговые токи, создающие магнитное поле, которое, однако, заполняет не весь объем, а распределено в нем в виде отдельных нитей. Что же касается сопротивления, то оно равно нулю, как и у сверхпроводников первого рода.

    По своей физической природе сверхпроводимость является сверхтекучестью жидкости, состоящей из электронов. Сверхтекучесть возникает из-за прекращения обмена энергией между сверхтекучей компонентой жидкости и ее другими частями, в результате чего исчезает трение. Существенным при этом является возможность "конденсации" молекул жидкости на низшем энергетическом уровне, отделенном от других уровней достаточно широкой энергетической щелью, которую силы взаимодействия не в состоянии преодолеть. В этом и состоит причина выключения взаимодействия. Для возможности нахождения на низшем уровне многих частиц необходимо, чтобы они подчинялись статистике Бозе-Эйнштейна, т.е. обладали целочисленным спином.

    Электроны подчиняются статистике Ферми-Дирака и поэтому не могут "конденсироваться" на низшем энергетическом уровне и образовывать сверхтекучую электронную жидкость. Силы отталкивания между электронами в значительной степени компенсируются силами притяжения положительных ионов кристаллической решетки. Однако благодаря тепловым колебаниям атомов в узлах кристаллической решетки между электронами может возникнуть сила притяжения, и они тогда объединяются в пары. Пары электронов ведут себя как частицы с целочисленным спином, т.е. подчиняются статистике Бозе-Эйнштейна. Они могут конденсироваться и образовывать ток сверхтекучей жидкости электронных пар, который и образует сверхпроводящий электрический ток. Выше низшего энергетического уровня имеется энергетическая щель, которую электронная пара не в состоянии преодолеть за счет энергии взаимодействия с остальными зарядами, т.е. не может изменить своего энергетического состояния. Поэтому электрическое сопротивление отсутствует.

    Возможность образования электронных пар и их сверхтекучести объясняется квантовой теорией.

    Практическое использование сверхпроводящих материалов (в обмотках сверхпроводящих магнитов, в системах памяти ЭВМ и др.) затруднено из-за низких их критических температур. В настоящее время обнаружены и активно исследуются керамические материалы, обладающие сверхпроводимостью при температурах выше 100 К (высокотемпературные сверхпроводники). Явление сверхпроводимости объясняется квантовой теорией.

    Зависимость сопротивления проводников от температуры и давления используется в технике для измерения температуры (термометры сопротивления) и больших быстроизменяющихся давлений (электрические тензометры).

    В системе СИ удельное электрическое сопротивление проводников измеряется в Омм, а сопротивление – в Ом. Один Ом – сопротивление такого проводника, в котором при напряжении 1В течет постоянный ток силой 1А.

    Электрической проводимостью называется величина, определяемая по формуле

    . (6.27)

    В системе СИ единицей проводимости является сименс. Один сименс (1 См) – проводимость участка цепи сопротивлением 1 Ом.

    Электрическое сопротивление - физическая величина, которая показывает, какое препятствие создается току при его прохождении по проводнику . Единицами измерения служат Омы, в честь Георга Ома. В своем законе он вывел формулу для нахождения сопротивления, которая приведена ниже.

    Рассмотрим сопротивление проводников на примере металлов. Металлы имеют внутреннее строение в виде кристаллической решетки. Эта решетка имеет строгую упорядоченность, а её узлами являются положительно заряженные ионы. Носителями заряда в металле выступают “свободные” электроны, которые не принадлежат определенному атому, а хаотично перемещаются между узлами решетки. Из квантовой физики известно, что движение электронов в металле это распространение электромагнитной волны в твердом теле. То есть электрон в проводнике движется со скоростью света (практически), и доказано, что он проявляет свойства не только как частица, но еще и как волна. А сопротивление металла возникает в результате рассеяния электромагнитных волн (то есть электронов) на тепловых колебаниях решетки и её дефектах. При столкновении электронов с узлами кристаллической решетки часть энергии передается узлам, вследствие чего выделяется энергия. Эту энергию можно вычислить при постоянном токе , благодаря закону Джоуля-Ленца – Q=I 2 Rt. Как видите чем больше сопротивление, тем больше энергии выделяется.

    Удельное сопротивление

    Существует такое важное понятие как удельное сопротивление, это тоже самое сопротивление, только в единице длины. У каждого металла оно свое, например у меди оно равно 0,0175 Ом*мм2/м, у алюминия 0,0271 Ом*мм2/м. Это значит, брусок из меди длиной 1 м и площадью поперечного сечения 1 мм2 будет иметь сопротивление 0,0175 Ом, а такой же брусок, но из алюминия будет иметь сопротивление 0,0271 Ом. Выходит что электропроводность меди выше чем у алюминия. У каждого металла удельное сопротивление свое, а рассчитать сопротивление всего проводника можно по формуле

    где p – удельное сопротивление металла, l – длина проводника, s – площадь поперечного сечения.

    Значения удельных сопротивлений приведены в таблице удельных сопротивлений металлов (20°C)

    Вещество

    p , Ом*мм 2 /2

    α,10 -3 1/K

    Алюминий

    0.0271

    Вольфрам

    0.055

    Железо

    0.098

    Золото

    0.023

    Латунь

    0.025-0.06

    Манганин

    0.42-0.48

    0,002-0,05

    Медь

    0.0175

    Никель

    Константан

    0.44-0.52

    0.02

    Нихром

    0.15

    Серебро

    0.016

    Цинк

    0.059

    Кроме удельного сопротивления в таблице есть значения ТКС, об этом коэффициенте чуть позже.

    Зависимость удельного сопротивления от деформаций

    При холодной обработке металлов давлением, металл испытывает пластическую деформацию. При пластической деформации кристаллическая решетка искажается, количество дефектов становится больше. С увеличением дефектов кристаллической решетки, сопротивление течению электронов по проводнику растет, следовательно, удельное сопротивление металла увеличивается. К примеру, проволоку изготавливают методом протяжки, это значит, что металл испытывает пластическую деформацию, в результате чего, удельное сопротивление растет. На практике для уменьшения сопротивления применяют рекристаллизационный отжиг, это сложный технологический процесс, после которого кристаллическая решетка как бы, “расправляется” и количество дефектов уменьшается, следовательно, и сопротивление металла тоже.

    При растяжении или сжатии, металл испытывает упругую деформацию. При упругой деформации вызванной растяжением, амплитуды тепловых колебаний узлов кристаллической решетки увеличиваются, следовательно, электроны испытывают большие затруднения, и в связи с этим, увеличивается удельное сопротивление. При упругой деформации вызванной сжатием, амплитуды тепловых колебаний узлов уменьшаются, следовательно, электронам проще двигаться, и удельное сопротивление уменьшается.

    Влияние температуры на удельное сопротивление

    Как мы уже выяснили выше, причиной сопротивления в металле являются узлы кристаллической решетки и их колебания. Так вот, при увеличении температуры, тепловые колебания узлов увеличиваются, а значит, удельное сопротивление также увеличивается. Существует такая величина как температурный коэффициент сопротивления (ТКС), который показывает насколько увеличивается, или уменьшается удельное сопротивление металла при нагреве или охлаждении. Например, температурный коэффициент меди при 20 градусах по цельсию равен 4.1 · 10 − 3 1/градус. Это означает что при нагреве, к примеру, медной проволоки на 1 градус цельсия, её удельное сопротивление увеличится на 4.1 · 10 − 3 Ом. Удельное сопротивление при изменении температуры можно вычислить по формуле

    где r это удельное сопротивление после нагрева, r 0 – удельное сопротивление до нагрева, a – температурный коэффициент сопротивления, t 2 – температура до нагрева, t 1 - температура после нагрева.

    Подставив наши значения, мы получим: r=0,0175*(1+0.0041*(154-20))=0,0271 Ом*мм 2 /м. Как видите наш брусок из меди длиной 1 м и площадью поперечного сечения 1 мм 2 , после нагрева до 154 градусов, имел бы сопротивление, как у такого же бруска, только из алюминия и при температуре равной 20 градусов цельсия.

    Свойство изменения сопротивления при изменении температуры, используется в термометрах сопротивления. Эти приборы могут измерять температуру основываясь на показаниях сопротивления. У термометров сопротивления высокая точность измерений, но малые диапазоны температур.

    На практике, свойства проводников препятствовать прохождению тока используются очень широко. Примером может служить лампа накаливания, где нить из вольфрама, нагревается за счет высокого сопротивления металла, большой длины и узкого сечения. Или любой нагревательный прибор, где спираль разогревается благодаря высокому сопротивлению. В электротехнике, элемент главным свойством которого является сопротивление, называется – резистор . Резистор применяется практически в любой электрической схеме.

    При нагревании увеличивается в результате увеличения скорости движения атомов в материале проводника с возрастанием температуры. Удельное сопротивление электролитов и угля при нагревании, наоборот, уменьшается, так как у этих материалов, кроме увеличения скорости движения атомов и молекул, возрастает число свободных электронов и ионов в единице объема.

    Некоторые сплавы, обладающие большим , чем составляющие их металлы, почти не меняют удельного сопротивления с нагревом (константан, манганин и др.). Это объясняется неправильной структурой сплавов и малым средним временем свободного пробега электронов.

    Величина, показывающая относительное увеличение сопротивления при нагреве материала на 1° (или уменьшение при охлаждении на 1°), называется .

    Если температурный коэффициент обозначить через α , удельное сопротивление при to =20 о через ρ o , то при нагреве материала до температуры t1 его удельное сопротивление p1 = ρ o + αρ o (t1 - to) = ρ o(1 + (α (t1 - to))

    и соответственно R1 = Ro (1 + (α (t1 - to))

    Температурный коэффициент а для меди, алюминия, вольфрама равен 0,004 1/град. Поэтому при нагреве на 100° их сопротивление возрастает на 40%. Для железа α = 0,006 1/град, для латуни α = 0,002 1/град, для фехрали α = 0,0001 1/град, для нихрома α = 0,0002 1/град, для константана α = 0,00001 1/град, для манганина α = 0,00004 1/град. Уголь и электролиты имеют отрицательный температурный коэффициент сопротивления. Температурный коэффициент для большинства электролитов равен примерно 0,02 1/град.

    Свойство проводников изменять свое сопротивления в зависимости от температуры используется в термометрах сопротивления . Измеряя сопротивление, определяют расчетным путем окружающую температуру.Константан, манганин и другие сплавы, имеющие очень небольшой температурный коэффициент сопротивления применяют для изготовления шунтов и добавочных сопротивлений к измерительным приборам.

    Пример 1. Как изменится сопротивление Ro железной проволоки при нагреве ее на 520°? Температурный коэффициент а железа 0,006 1/град. По формуле R1 = Ro + Ro α (t1 - to) = Ro + Ro 0,006 (520 - 20) = 4Ro , то есть сопротивление железной проволоки при нагреве ее на 520° возрастет в 4 раза.

    Пример 2. Алюминиевые провода при температуре -20° имеют сопротивление 5 ом. Необходимо определить их сопротивление при температуре 30°.

    R2 = R1 - αR1 (t2 - t1) = 5 + 0 ,004 х 5 (30 - (-20)) = 6 ом.

    Свойство материалов изменять свое электрическое сопротивление при нагреве или охлаждении используется для измерения температур. Так, термосопротивления , представляющие собой проволоку из платины или чистого никеля, вплавленные в кварц, применяются для измерения температур от -200 до +600°. Полупроводниковые термосопротивления с большим отрицательным коэффициентом применяются для точного определения температур в более узких диапазонах.

    Полупроводниковые термосопротивления, применяемые для измерения температур называют термисторами .

    Термисторы имеют высокий отрицательный температурный коэффициент сопротивления, то есть при нагреве их сопротивление уменьшается. выполняют из оксидных (подвергнутых окислению) полупроводниковых материалов, состоящих из смеси двух или трех окислов металлов. Наибольшее распространение имеют медно-марганцевые и кобальто-марганцевые термисторы. Последние более чувствительны к температуре.



    В продолжение темы:
    Стрижки и прически

    Для приготовления сырков понадобятся силиконовые формочки среднего размера и силиконовая кисточка. Я использовала молочный шоколад, необходимо брать шоколад хорошего качества,...

    Новые статьи
    /
    Популярные