Игры в чистых стратегиях

Смешанной стратегией SA игрока А называется применение чистых стратегий A1, A2, ..., Am с вероятностями p1, p2, ..., pi, ..., pm причем сумма вероятностей равна 1: Смешанные стратегии игрока А записываются в виде матрицы или в виде строки SA = (p1, p2, ..., pi, ..., pm) Аналогично смешанные стратегии игрока В обозначаются: , или, SB = (q1, q2, ..., qi, ..., qn), где сумма вероятностей появления стратегий равна 1: Чистые стратегии можно считать частным случаем смешанных и задавать строкой, в которой 1 соответствует чистой стратегии. На основании принципа минимакса определяется оптимальное решение (или решение) игры: это пара оптимальных стратегий S*A , S*B в общем случае смешанных, обладающих следующим свойством: если один из игроков придерживается своей оптимальной стратегии, то другому не может быть выгодно отступать от своей. Выигрыш, соответствующий оптимальному решению, называется ценой игры v. Цена игры удовлетворяет неравенству: ? ? v ? ? (3.5) где? и? - нижняя и верхняя цены игры. Справедлива следующая основная теорема теории игр - теорема Неймана. Каждая конечная игра имеет по крайней мере одно оптимальное решение, возможно, среди смешанных стратегий. Пусть S*A = (p*1, p*2, ..., p*i, ..., p*m) и S*B = (q*1, q*2, ..., q*i, ..., q*n) - пара оптимальных стратегий. Если чистая стратегия входит в оптимальную смешанную стратегию с отличной от нуля вероятностью, то она называется активной. Справедлива теорема об активных стратегиях: если один из игроков придерживается своей оптимальной смешанной стратегии, то выигрыш остается неизменным и равным цене игры v, если второй игрок не выходит за пределы своих активных стратегий. Эта теорема имеет большое практическое значение - она дает конкретные модели нахождения оптимальных стратегий при отсутствии седловой точки. Рассмотрим игру размера 2×2, которая является простейшим случаем конечной игры. Если такая игра имеет седловую точку, то оптимальное решение - это пара чистых стратегий, соответствующих этой точке. Игра, в которой отсутствует седловая точка, в соответствии с основной теоремой теории игр оптимальное решение существует и определяется парой смешанных стратегий S*A = (p*1, p*2) и S*B = (q*1, q*2). Для того чтобы их найти, воспользуемся теоремой об активных стратегиях. Если игрок А придерживается своей оптимальной стратегии S"A, то его средний выигрыш будет равен цене игры v, какой бы активной стратегией ни пользовался игрок В. Для игры 2×2 любая чистая стратегия противника является активной, если отсутствует седловая точка. Выигрыш игрока А (проигрыш игрока В) - случайная величина, математическое ожидание (среднее значение) которой является ценой игры. Поэтому средний выигрыш игрока А (оптимальная стратегия) будет равен v и для 1-й, и для 2-й стратегии противника. Пусть игра задана платежной матрицей Средний выигрыш игрока А, если он использует оптимальную смешанную стратегию, а игрок В - чистую стратегию B1 (это соответствует 1-му столбцу платежной матрицы Р), равен цене игры v: a11 p*1+ a21 p*2= v. Тот же средний выигрыш получает игрок А, если 2-й игрок применяет стратегию B2, т.е. a12 p*1+ a22 p*2= v. Учитывая, что p*1+ p*2= 1, получаем систему уравнений для определения оптимальной стратегии S"A и цены игры v: (3.6) Решая эту систему, получим оптимальную стратегию (3.7) и цену игры (3.8) Применяя теорему об активных стратегиях при отыскании SВ*- оптимальной стратегии игрока В, получаем, что при любой чистой стратегии игрока А (А1 или А2) средний проигрыш игрока В равен цене игры v, т.е. (3.9) Тогда оптимальная стратегия определяется формулами: (3.10)

Математические методы и модели в экономике

Матричные игры

Введение

В экономической практике часто возникают ситуации, в которых различные стороны преследуют различные цели. Например, отношения между продавцом и покупателем, поставщиком и потребителем, банком и вкладчиком и т.д. Такие конфликтные ситуации возникают не только в экономике, но в других видах деятельности. Например, при игре в шахматы, шашки, домино, лото и т.д.

Игра – это математическая модель конфликтной ситуации с участием не менее двух лиц, использующих несколько различных способов для достижения своих целей. Игра называется парной, если в ней участвуют два игрока. Игра называется антагонистической, если выигрыш одного игрока равен проигрышу другого. Следовательно, для задания игры достаточно задать величины выигрышей одного игрока в различных ситуациях.

Любой способ действия игрока в зависимости от сложившейся ситуации называется стратегией. Каждый игрок располагает определенным набором стратегий. Если число стратегий конечно, то игра называется конечной, в противном случае – бесконечной . Стратегии называются чистыми, если каждый из игроков выбирает только одну стратегию определенным, а не случайным образом.

Решение игры заключается в выборе такой стратегии, которая удовлетворяет условию оптимальности. Это условие состоит в том, что один игрок получает максимальный выигрыш , если второй придерживается своей стратегии. И наоборот, второй игрок получает минимальный проигрыш , если первый из игроков придерживается своей стратегии. Такие стратегии называются оптимальными . Таким образом, цель игры – это определение оптимальной стратегии для каждого игрока.

Игра в чистых стратегиях

Рассмотрим игру с двумя игроками А и В. Предположим, что игрок А имеет m стратегий А 1 , А 2 , …, А m , а игрок В имеет n стратегий B 1 , B 2 , … ,B n . Будем считать, что выбор игроком А стратегии А i , а игроком В стратегии B j однозначно определяет исход игры, т.е. выигрыш a ij игрока А и выигрыш b ij игрока В. Здесь i=1,2,…,m, j=1,2,…,n.

Простейшей игрой с двумя игроками является антагонистическая игра, т.е. игра, в которой интересы игроков прямо противоположны. В этом случае выигрыши игроков связаны равенством

b ij =-a ij

Это равенство означает, что выигрыш одного из игроков равен проигрышу другого. В этом случае достаточно рассматривать лишь выигрыши одного из игроков, например, игрока А.

Каждой паре стратегий А i и B j соответствует выигрыш a ij игрока А. Все эти выигрыши удобно записывать в виде так называемой платежной матрицы

Строки этой матрицы соответствуют стратегиям игрока А, а столбцы – стратегиям игрока В. В общем случае такая игра называется (m×n)-игрой.


Пример 1. Два игрока А и В бросают монету. Если стороны монеты совпадают, то выигрывает А , т.е. игрок В платит игроку А некоторую сумму, равную 1, а если не совпадают, то выигрывает игрок В, т.е. наоборот, игрок А платит игроку В эту же сумму, равную 1. Сформировать платежную матрицу.

Решение. По условию задачи

Среди конечных игр, имеющих практическое значение, сравнительно редко встречаются игры с седловой точкой; более типичным является случай» когда нижняя и верхняя цена - игры различны. Анализируя матрицы таких игр, мы пришли к заключению, что если каждому игроку предоставлен выбор

одной - единственной стратегии., то в расчете на разумно действующего противника этот выбор должен определяться принципом минимакса. Придерживаясь своей максиминной стратегии, мы при любом поведении противника заведомо гарантируем себе выигрыш, равный нижней цене -игры а. Возникает естественный вопрос: нельзя ли гарантировать себе средний выигрыш, больший а, если применять не одну-единственную «чистую» стратегию, а чередовать случайным образом несколько стратегий?

Такие комбинированные стратегии, состоящие в применении нескольких чистых стратегий, чередующихся по случайному закону с определенным соотношением частот, в теории игр называются смешанными стратегиями.

Очевидно, каждая чистая стратегия является частным случаем смешанной, в которой все стратегии, кроме одной, применяются с нулевыми частотами, а данная - с частотой 1.

Оказывается, что, применяя не только чистые, но и смешанные стратегии, можно для каждой конечной игры получить решение, т. е. пару таких (в общем случае смешанных) стратегий, что при применении их обоими игроками выигрыш будет равен цене игры, а при любом одностороннем отклонении от оптимальной стратегии выигрыш может измениться только в сторону, невыгодную для отклоняющегося.

Высказанное утверждение составляет содержание так называемой основной теоремы теории игр. Эта теорема была впервые доказана фон Нейманом в 1928 г. Известные доказательства теоремы сравнительно сложны; поэтому приведем только ее формулировку.

Каждая конечная игра имеет, по крайней мере, одно решение (возможно, в области смешанных стратегий).

Выигрыш, получаемый в результате решения, называется ценой игры. Из основной теоремы следует, что каждая конечная игра имеет цену. Очевидно, что цена игры v всегда лежит между нижней ценой игры а и верхней ценой игры :

Действительно, а есть максимальный гарантированный выигрыш, который мы можем себе обеспечить, применяя только свои чистые стратегии. Так как смешанные стратегии включают в себя в качестве частного случая и все чистые, то, допуская, кроме чистых, еще и смешанные

стратегии, мы, во всяком случае, не ухудшаем своих возможностей; следовательно,

Аналогично, рассматривая возможности противника, покажем, что

откуда следует доказываемое неравенство (3.1).

Введем специальное обозначение для смешанных стратегий. Если, например, наша смешанная стратегия состоит в применении стратегий АЛ, с частотами причем будем обозначать эту стратегию

Аналогично смешанную стратегию противника будем обозначать:

где - частоты, в которых смешиваются стратегии

Предположим, что нами найдено решение игры, состоящее из двух оптимальных смешанных стратегий S, S. В общем случае не все чистые стратегии, доступные данному игроку, входят в его оптимальную смешанную стратегию, а только некоторые. Будем называть стратегии, входящие в оптимальную смешанную стратегию игрока, его «полезными» стратегиями.

Оказывается, что решение игры обладает еще одним замечательным свойством: если один из игроков придерживается своей оптимальной смешанной стратегии 5 (5). то выигрыш остается неизменным и равным цене игры v, независимо от того, что делает другой игрок, если он. только не выходит за пределы своих «полезных» стратегий. Он, например, может пользоваться любой из своих «полезных» стратегий в чистом виде, а также может смешивать их в любых пропорциях.

Докажем это утверждение. Пусть имеется решение игры . Для конкретнрсти будем считать, что оптимальная смешанная стратегия состоит из смеси трех

«полезных» стратегий соответственно состоит из смеси трех «полезных» стратегий

причем Утверждается что если мы будем придерживаться стратегии S, то противник может применять стратегии в любых пропорциях, а выигрыш останется неизменным и по-прежнему будет равен цене игры

Различают стратегии чистые и смешанные. Чистая стратегия
первого игрока (чистая стратегия
второго игрока) – это возможный ход первого (второго) игрока, выбранный им с вероятностью, равной 1.

Если первый игрок имеет m стратегий, а второй – n стратегий, то для любой пары стратегий первого и второго игроков чистые стратегии можно представить в виде единичных векторов. Например, для пары стратегий
,
чистые стратегии первого и второго игроков запишутся в виде:
,
. Для пары стратегий ,чистые стратегии можно записать в виде:

,

.

Теорема : В матричной игре нижняя чистая цена игры не превосходит верхней чистой цены игры, т. е.
.

Определение: Если для чистых стратегий ,игроковA и В соответственно имеет место равенство
, то пару чистых стратегий (,) называют седловой точкой матричной игры, элементматрицы, стоящий на пересеченииi-й строки и j-го столбца – седловым элементом платежной матрицы, а число
- чистой ценой игры.

Пример: Найти нижнюю и верхнюю чистые цены, установить наличие седловых точек матричной игры

.

Определим нижние и верхние чистые цены игры: , ,
.

В данном случае имеем одну седловую точку (А 1 ; В 2), а седловой элемент равен 5. Этот элемент является наименьшим в 1-й строке и наибольшим во 2-м столбце. Отклонение игрока А от максиминной стратегии А 1 ведет к уменьшению его выигрыша, а отклонение игрока В от минимаксной стратегии В 2 ведет к увеличению его проигрыша. Иными словами, если в матричной игре имеется седловой элемент, то наилучшими для игроков являются их минимаксные стратегии. И эти чистые стратегии, образующие седловую точку и выделяющие в матрице игры седловой элемент a 12 =5, есть оптимальные чистые стратегии исоответственно игроков А и В.

Если же матричная игра не имеет седловой точки, то решение игры затрудняется. В этих играх
. Применение минимаксных стратегий в таких играх приводит к тому, что для каждого из игроков выигрыш не превышает , а проигрыш - не меньше . Для каждого игрока возникает вопрос увеличения выигрыша (уменьшение проигрыша). Решение находят, применяя смешанные стратегии.

Определение: Смешанной стратегией первого (второго) игрока называется вектор
, где
и
(
, где
и
).

Вектор p(q) означает вероятность применения i-й чистой стратегии первым игроком (j-й чистой стратегии вторым игроком).

Поскольку игроки выбирают свои чистые стратегии случайно и независимо друг от друга, игра имеет случайный характер и случайной становится величина выигрыша (проигрыша). В таком случае средняя величина выигрыша (проигрыша) – математическое ожидание – является функцией от смешанных стратегий р, q:

.

Определение: Функция f(р, q) называется платежной функцией игры с матрицей
.

Определение: Стратегии
,
называются оптимальными, если для произвольных стратегий
,
выполняется условие

Использование в игре оптимальных смешанных стратегий обеспечивает первому игроку выигрыш, не меньший, чем при использовании им любой другой стратегии р; второму игроку – проигрыш, не больший, чем при использовании им любой другой стратегии q.

Совокупность оптимальных стратегий и цены игры составляет решение игры.

Чистой стратегией игрока I является выбор одной из n строк матрицы выигрышей А, а чистой стратегией игрока II является выбор одного из столбцов этой же матрицы.

Оптимальные чистые стратегии игроков отличаются от смешанных наличием обязательного единичного p i = 1, q i = 1. Например: P(1,0), Q(1,0). Здесь p 1 = 1, q 1 = 1.

Задача 1
По платёжной матрице найти оптимальные чистые стратегии, используя принцип строгого доминирования. В качестве ответа записать векторы P*, Q*.



R1

R2

R3

R4

S1

3

1

2

5

S2

2

0

0

3

S3

-3

-5

-5

-2

S4

0

-2

-2

1

Решение:

Все задачи решаем с помощью калькулятора Матричная игра .

Считаем, что игрок I выбирает свою стратегию так, чтобы получить максимальный свой выигрыш, а игрок II выбирает свою стратегию так, чтобы минимизировать выигрыш игрока I.

Игроки B 1 B 2 B 3 B 4 a = min(A i)
A 1 3 1 2 5 1
A 2 2 0 0 3 0
A 3 -3 -5 -5 -2 -5
A 4 0 -2 -2 1 -2
b = max(B i) 3 1 2 5
Находим гарантированный выигрыш, определяемый нижней ценой игры a = max(a i) = 1, которая указывает на максимальную чистую стратегию A 1 .
Верхняя цена игры b = min(b j) = 1.
Седловая точка (1, 2) указывает решение на пару альтернатив (A1,B2). Цена игры равна 1.
2. Проверяем платежную матрицу на доминирующие строки и доминирующие столбцы.
Иногда на основании простого рассмотрения матрицы игры можно сказать, что некоторые чистые стратегии могут войти в оптимальную смешанную стратегию лишь с нулевой вероятностью.
Говорят, что i-я стратегия 1-го игрока доминирует его k-ю стратегию, если a ij ≥ a kj для всех j Э N и хотя бы для одного j a ij > a kj . В этом случае говорят также, что i-я стратегия (или строка) – доминирующая, k-я – доминируемая.
Говорят, что j-я стратегия 2-го игрока доминирует его l-ю стратегию, если для всех j Э M a ij ≤ a il и хотя бы для одного i a ij < a il . В этом случае j-ю стратегию (столбец) называют доминирующей, l-ю – доминируемой.
Стратегия A 1 доминирует над стратегией A 2 (все элементы строки 1 больше или равны значениям 2-ой строки), следовательно исключаем 2-ую строку матрицы. Вероятность p 2 = 0.
Стратегия A 1 доминирует над стратегией A 3 (все элементы строки 1 больше или равны значениям 3-ой строки), следовательно исключаем 3-ую строку матрицы. Вероятность p 3 = 0.
3 1 2 5
0 -2 -2 1

С позиции проигрышей игрока В стратегия B 1 доминирует над стратегией B 2 (все элементы столбца 1 больше элементов столбца 2), следовательно исключаем 1-й столбец матрицы. Вероятность q 1 = 0.
С позиции проигрышей игрока В стратегия B 4 доминирует над стратегией B 1 (все элементы столбца 4 больше элементов столбца 1), следовательно исключаем 4-й столбец матрицы. Вероятность q 4 = 0.
1 2
-2 -2

Мы свели игру 4 x 4 к игре 2 x 2.



Решение игры (2 x n


p 1 = 1
p 2 = 0
Цена игры, y = 1
Теперь можно найти минимаксную стратегию игрока B, записав соответствующую систему уравнений
q 1 = 1
q 1 +q 2 = 1
Решая эту систему, находим:
q 1 = 1.
Ответ:
Цена игры: y = 1, векторы стратегии игроков:
Q(1, 0), P(1, 0)

∑a ij q j ≤ v
∑a ij p i ≥ v
M(P 1 ;Q) = (1 1) + (2 0) = 1 = v
M(P 2 ;Q) = (-2 1) + (-2 0) = -2 ≤ v
M(P;Q 1) = (1 1) + (-2 0) = 1 = v
M(P;Q 2) = (2 1) + (-2 0) = 2 ≥ v

Поскольку из исходной матрицы были удалены строки и столбцы, то найденные векторы вероятности можно записать в виде:
P(1,0,0,0)
Q(0,1,0,0)

Задача 2
По платёжной матрице найти нижнюю и верхнюю цену игры. При наличии седловой точки записать векторы оптимальных чистых стратегий P*, Q*.



R1

R2

R3

S1

-6

-5

0

S2

-8

-3

-2

S3

-3

-2

3

Решение:
1. Проверяем, имеет ли платежная матрица седловую точку. Если да, то выписываем решение игры в чистых стратегиях.
Игроки B 1 B 2 B 3 a = min(A i)
A 1 -6 -5 0 -6
A 2 -8 -3 -2 -8
A 3 -3 -2 3 -3
b = max(B i) -3 -2 3

Находим гарантированный выигрыш, определяемый нижней ценой игры a = max(a i) = -3, которая указывает на максимальную чистую стратегию A 3 .
Верхняя цена игры b = min(b j) = -3.
Седловая точка (3, 1) указывает решение на пару альтернатив (A3,B1). Цена игры равна -3.
Ответ: P(0,0,1), Q(1,0,0)

Задача 3
По платёжной матрице найти векторы оптимальных стратегий P*, Q*и цену игры. Кто из игроков оказывается в выигрыше?



R1

R2

R3

R4

S1

-6

-6

2

4

S2

2

-2

7

-1

Решение:
1. Проверяем, имеет ли платежная матрица седловую точку. Если да, то выписываем решение игры в чистых стратегиях.
Считаем, что игрок I выбирает свою стратегию так, чтобы получить максимальный свой выигрыш, а игрок II выбирает свою стратегию так, чтобы минимизировать выигрыш игрока I.
Игроки B 1 B 2 B 3 B 4 a = min(A i)
A 1 -6 -6 2 4 -6
A 2 2 -2 7 -1 -2
b = max(B i) 2 -2 7 4

Находим гарантированный выигрыш, определяемый нижней ценой игры a = max(a i) = -2, которая указывает на максимальную чистую стратегию A 2 .
Верхняя цена игры b = min(b j) = -2.
Седловая точка (2, 2) указывает решение на пару альтернатив (A2,B2). Цена игры равна -2.
3. Находим решение игры в смешанных стратегиях.
Решим задачу геометрическим методом, который включает в себя следующие этапы:
1. В декартовой системе координат по оси абсцисс откладывается отрезок, длина которого равна 1. Левый конец отрезка (точка х = 0) соответствует стратегии A 1 , правый - стратегии A 2 (x = 1). Промежуточные точки х соответствуют вероятностям некоторых смешанных стратегий S 1 = (p 1 ,p 2).
2. На левой оси ординат откладываются выигрыши стратегии A 1 . На линии, параллельной оси ординат, из точки 1 откладываются выигрыши стратегии A 2 .
Решение игры (2 x n ) проводим с позиции игрока A, придерживающегося максиминной стратегии. Доминирующихся и дублирующих стратегий ни у одного из игроков нет.

Максиминной оптимальной стратегии игрока A соответствует точка N, для которой можно записать следующую систему уравнений:
p 1 = 0
p 2 = 1
Цена игры, y = -2
Теперь можно найти минимаксную стратегию игрока B, записав соответствующую систему уравнений, исключив стратегию B 1 ,B 3 ,B 4 , которая дает явно больший проигрыш игроку B, и, следовательно, q 1 = 0,q 3 = 0,q 4 = 0.
-2q 2 = -2
q 2 = 1
Решая эту систему, находим:
q 2 = 1.
Ответ:
Цена игры: y = -2, векторы стратегии игроков:
Q(0, 1, 0, 0), P(0, 1)
4. Проверим правильность решения игры с помощью критерия оптимальности стратегии.
∑a ij q j ≤ v
∑a ij p i ≥ v
M(P 1 ;Q) = (-6 0) + (-6 1) + (2 0) + (4 0) = -6 ≤ v
M(P 2 ;Q) = (2 0) + (-2 1) + (7 0) + (-1 0) = -2 = v
M(P;Q 1) = (-6 0) + (2 1) = 2 ≥ v
M(P;Q 2) = (-6 0) + (-2 1) = -2 = v
M(P;Q 3) = (2 0) + (7 1) = 7 ≥ v
M(P;Q 4) = (4 0) + (-1 1) = -1 ≥ v
Все неравенства выполняются как равенства или строгие неравенства, следовательно, решение игры найдено верно.

Задача 4
Дайте развернутый ответ на вопрос



В продолжение темы:
Стрижки и прически

Русская народная сказка "Бычок смоляной бочок" Жанр: народная волшебная сказкаГлавные герои сказки "Бычок смоляной бочок" и их характеристика Дед с бабкой. Простые старики....

Новые статьи
/
Популярные