Какое событие имеет вероятность равную нулю. Теория вероятностей и основные понятия теории

  • Раздел 1. Случайные события (50 часов)
  • Тематический план дисциплины для студентов очно-заочной формы обучения
  • Тематический план дисциплины для студентов заочной формы обучения
  • 2.3. Структурно-логическая схема дисциплины
  • Математика ч.2. Теория вероятностей и элементы математической статистики Теория
  • Раздел 1 Случайные события
  • Раздел 3 Элементы математической статистики
  • Раздел 2 Случайные величины
  • 2.5. Практический блок
  • 2.6. Балльно-рейтинговая система
  • Информационные ресурсы дисциплины
  • Библиографический список Основной:
  • 3.2. Опорный конспект по курсу “ Математика ч.2. Теория вероятностей и элементы математической статистики” введение
  • Раздел 1. Случайные события
  • 1.1. Понятие случайного события
  • 1.1.1. Сведения из теории множеств
  • 1.1.2. Пространство элементарных событий
  • 1.1.3. Классификация событий
  • 1.1.4. Сумма и произведение событий
  • 1.2. Вероятности случайных событий.
  • 1.2.1. Относительная частота события, аксиомы теории вероятностей. Классическое определение вероятности
  • 1.2.2. Геометрическое определение вероятности
  • Вычисление вероятности события через элементы комбинаторного анализа
  • 1.2.4. Свойства вероятностей событий
  • 1.2.5. Независимые события
  • 1.2.6. Расчет вероятности безотказной работы прибора
  • Формулы для вычисления вероятности событий
  • 1.3.1. Последовательность независимых испытаний (схема Бернулли)
  • 1.3.2. Условная вероятность события
  • 1.3.4. Формула полной вероятности и формула Байеса
  • Раздел 2. Случайные величины
  • 2.1. Описание случайных величин
  • 2.1.1. Определение и способы задания случайной величины Одним из основных понятий теории вероятности является понятие случайной величины. Рассмотрим некоторые примеры случайных величин:
  • Чтобы задать случайную величину, надо указать ее закон распределения. Случайные величины принято обозначать греческими буквами ,,, а их возможные значения – латинскими буквами с индексамиxi,yi,zi.
  • 2.1.2. Дискретные случайные величины
  • Рассмотрим события Ai , содержащие все элементарные события , приводящие к значению XI:
  • Пусть pi обозначает вероятность события Ai:
  • 2.1.3. Непрерывные случайные величины
  • 2.1.4. Функция распределения и ее свойства
  • 2.1.5. Плотность распределения вероятности и ее свойства
  • 2.2. Числовые характеристики случайных величин
  • 2.2.1. Математическое ожидание случайной величины
  • 2.2.2. Дисперсия случайной величины
  • 2.2.3. Нормальное распределение случайной величины
  • 2.2.4. Биномиальное распределение
  • 2.2.5. Распределение Пуассона
  • Раздел 3. Элементы математической статистики
  • 3.1. Основные определения
  • Гистограмма
  • 3.3. Точечные оценки параметров распределения
  • Основные понятия
  • Точечные оценки математического ожидания и дисперсии
  • 3.4. Интервальные оценки
  • Понятие интервальной оценки
  • Построение интервальных оценок
  • Основные статистические распределения
  • Интервальные оценки математического ожидания нормального распределения
  • Интервальная оценка дисперсии нормального распределения
  • Заключение
  • Глоссарий
  • 4. Методические указания к выполнению лабораторных работ
  • Библиографический список
  • Лабораторная работа 1 описание случайных величин. Числовые характеристики
  • Порядок выполнения лабораторной работы
  • Лабораторная работа 2 Основные определения. Систематизация выборки. Точечные оценки параметров распределения. Интервальные оценки.
  • Понятие статистической гипотезы о виде распределения
  • Порядок выполнения лабораторной работы
  • Ячейка Значение Ячейка Значение
  • 5. Методические указания к выполнению контрольной работы Задание на контрольную работу
  • Методические указания к выполнению контрольной работы События и их вероятности
  • Случайные величины
  • Среднее квадратическое отклонение
  • Элементы математической статистики
  • 6. Блок контроля освоения дисциплины
  • Вопросы для экзамена по курсу « Математика ч.2. Теория вероятностей и элементы математической статистики»
  • Продолжение таблицы в
  • Окончание таблицы в
  • Равномерно распределенные случайные числа
  • Содержание
  • Раздел 1. Случайные события………………………………………. 18
  • Раздел 2 . Случайные величины..………………………… ….. 41
  • Раздел 3. Элементы математической статистики............... . 64
  • 4. Методические указания к выполнению лабораторных
  • 5. Методические указания к выполнению контрольной
      1. Формулы для вычисления вероятности событий

    1.3.1. Последовательность независимых испытаний (схема Бернулли)

    Предположим, что некоторый эксперимент можно проводить неоднократно при одних и тех же условиях. Пусть этот опыт производится n раз, т. е. проводится последовательность из n испытаний.

    Определение. Последовательность n испытаний называют взаимно независимой , если любое событие, связанное с данным испытанием, не зависит от любых событий, относящихся к остальным испытаниям.

    Допустим, что некоторое событие A может произойти с вероятностью p в результате одного испытания или не произойти с вероятностью q = 1- p .

    Определение . Последовательность из n испытаний образует схему Бернулли, если выполняются следующие условия:

      последовательность n испытаний взаимно независима,

    2) вероятность события A не изменяется от испытания к испытанию и не зависит от результата в других испытаниях.

    Событие A называют “ успехом” испытания, а противоположное событие - “неудачей”. Рассмотрим событие

    ={ в n испытаниях произошло ровно m “успехов”}.

    Для вычисления вероятности этого события справедлива формула Бернулли

    p () =
    , m = 1, 2, …, n , (1.6)

    где - число сочетаний из n элементов по m :

    =
    =
    .

    Пример 1.16. Три раза подбрасывают кубик. Найти:

    а) вероятность того, что 6 очков выпадет два раза;

    б) вероятность того, что число шестерок не появится более двух раз.

    Решение . “Успехом” испытания будем считать выпадение на кубике грани с изображением 6 очков.

    а) Общее число испытаний – n =3, число “успехов” – m = 2. Вероятность “успеха” - p =, а вероятность “неудачи” - q = 1 - =. Тогда по формуле Бернулли вероятность того, что результате трехразового бросания кубика два раза выпадет сторона с шестью очками, будет равна

    .

    б) Обозначим через А событие, которое заключается в том, что грань с числом очков 6 появится не более двух раз. Тогда событие можно представить в виде суммы трех несовместных событий А=
    ,

    где В 3 0 – событие, когда интересующая грань ни разу не появится,

    В 3 1 - событие, когда интересующая грань появится один раз,

    В 3 2 - событие, когда интересующая грань появится два раза.

    По формуле Бернулли (1.6) найдем

    p (А ) = р (
    ) = p (
    )=
    +
    +
    =

    =
    .

    1.3.2. Условная вероятность события

    Условная вероятность отражает влияние одного события на вероятность другого. Изменение условий, в которых проводится эксперимент, также влияет

    на вероятность появления интересующего события.

    Определение. Пусть A и B – некоторые события, и вероятность p (B )> 0.

    Условной вероятностью события A при условии, что “событие B уже произошло” называется отношение вероятности произведения данных событий к вероятности события, которое произошло раньше, чем событие, вероятность которого требуется найти. Условная вероятность обозначается как p (A B ). Тогда по определению

    p (A B ) =
    . (1.7)

    Пример 1.17. Подбрасывают два кубика. Пространство элементарных событий состоит из упорядоченных пар чисел

    (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

    (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

    (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

    (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

    (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

    (6,1) (6,2) (6,3) (6,4) (6,5) (6,6).

    В примере 1.16 было установлено, что событие A ={число очков на первом кубике > 4} и событие C ={сумма очков равна 8} зависимы. Составим отношение

    .

    Это отношение можно интерпретировать следующим образом. Допустим, что о результате первого бросания известно, что число очков на первом кубике > 4. Отсюда следует, что бросание второго кубика может привести к одному из 12 исходов, составляющих событие A :

    (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

    (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) .

    При этом событию C могут соответствовать только два из них (5,3) (6,2). В этом случае вероятность события C будет равна
    . Таким образом, информация о наступлении событияA оказала влияние на вероятность события C .

          Вероятность произведения событий

    Теорема умножения

    Вероятность произведения событий A 1 A 2 A n определяется формулой

    p (A 1 A 2 A n ) = p (A 1) p (A 2 A 1))p (A n A 1 A 2 A n- 1). (1.8)

    Для произведения двух событий отсюда следует, что

    p (AB ) = p (A B) p {B ) = p (B A ) p {A ). (1.9)

    Пример 1.18. В партии из 25 изделий 5 изделий бракованных. Последовательно наугад выбирают 3 изделия. Определить вероятность того, что все выбранные изделия бракованные.

    Решение. Обозначим события:

    A 1 = {первое изделие бракованное},

    A 2 = {второе изделие бракованное},

    A 3 = {третье изделие бракованное},

    A = {все изделия бракованные}.

    Событие А есть произведение трех событий A = A 1 A 2 A 3 .

    Из теоремы умножения (1.6) получим

    p (A ) = р( A 1 A 2 A 3 ) = p (A 1) p (A 2 A 1))p (A 3 A 1 A 2).

    Классическое определение вероятности позволяет найти p (A 1) – это отношение числа бракованных изделий к общему количеству изделий:

    p (A 1)= ;

    p (A 2)это отношение числа бракованных изделий, оставшихся после изъятия одного, к общему числу оставшихся изделий:

    p (A 2 A 1))= ;

    p (A 3) – это отношение числа бракованных изделий, оставшихся после изъятия двух бракованных, к общему числу оставшихся изделий:

    p (A 3 A 1 A 2)=.

    Тогда вероятность события A будет равна

    p (A ) ==
    .

    Изначально, будучи всего лишь собранием сведений и эмпирических наблюдений за игрой в кости, теория вероятности стала основательной наукой. Первыми, кто придал ей математический каркас, были Ферма и Паскаль.

    От размышлений о вечном до теории вероятностей

    Две личности, которым теория вероятностей обязана многими фундаментальными формулами, Блез Паскаль и Томас Байес, известны как глубоко верующие люди, последний был пресвитерианским священником. Видимо, стремление этих двух ученых доказать ошибочность мнения о некой Фортуне, дарующей удачу своим любимчикам, дало толчок к исследованиям в этой области. Ведь на самом деле любая азартная игра с ее выигрышами и проигрышами — это всего лишь симфония математических принципов.

    Благодаря азарту кавалера де Мере, который в равной степени был игроком и человеком небезразличным к науке, Паскаль вынужден был найти способ расчета вероятности. Де Мере интересовал такой вопрос: "Сколько раз нужно выбрасывать попарно две кости, чтобы вероятность получить 12 очков превышала 50%?". Второй вопрос, крайне интересовавший кавалера: "Как разделить ставку между участниками незаконченной игры?" Разумеется, Паскаль успешно ответил на оба вопроса де Мере, который стал невольным зачинателем развития теории вероятностей. Интересно, что персона де Мере так и осталась известна в данной области, а не в литературе.

    Ранее ни один математик еще не делал попыток вычислять вероятности событий, поскольку считалось, что это лишь гадательное решение. Блез Паскаль дал первое определение вероятности события и показал, что это конкретная цифра, которую можно обосновать математическим путем. Теория вероятностей стала основой для статистики и широко применяется в современной науке.

    Что такое случайность

    Если рассматривать испытание, которое можно повторить бесконечное число раз, тогда можно дать определение случайному событию. Это один из вероятных исходов опыта.

    Опытом является осуществление конкретных действий в неизменных условиях.

    Чтобы можно было работать с результатами опыта, события обычно обозначают буквами А, B, C, D, Е…

    Вероятность случайного события

    Чтобы можно было приступить к математической части вероятности, нужно дать определения всем ее составляющим.

    Вероятность события - это выраженная в числовой форме мера возможности появления некоторого события (А или B) в результате опыта. Обозначается вероятность как P(A) или P(B).

    В теории вероятностей отличают:

    • достоверное событие гарантированно происходит в результате опыта Р(Ω) = 1;
    • невозможное событие никогда не может произойти Р(Ø) = 0;
    • случайное событие лежит между достоверным и невозможным, то есть вероятность его появления возможна, но не гарантирована (вероятность случайного события всегда в пределах 0≤Р(А)≤ 1).

    Отношения между событиями

    Рассматривают как одно, так и сумму событий А+В, когда событие засчитывается при осуществлении хотя бы одного из составляющих, А или В, или обоих - А и В.

    По отношению друг к другу события могут быть:

    • Равновозможными.
    • Совместимыми.
    • Несовместимыми.
    • Противоположными (взаимоисключающими).
    • Зависимыми.

    Если два события могут произойти с равной вероятностью, то они равновозможные .

    Если появление события А не сводит к нулю вероятность появление события B, то они совместимые.

    Если события А и В никогда не происходят одновременно в одном и том же опыте, то их называют несовместимыми . Бросание монеты - хороший пример: появление решки - это автоматически непоявление орла.

    Вероятность для суммы таких несовместимых событий состоит из суммы вероятностей каждого из событий:

    Р(А+В)=Р(А)+Р(В)

    Если наступление одного события делает невозможным наступление другого, то их называют противоположными. Тогда одно из них обозначают как А, а другое - Ā (читается как «не А»). Появление события А означает, что Ā не произошло. Эти два события формируют полную группу с суммой вероятностей, равной 1.

    Зависящие события имеют взаимное влияние, уменьшая или увеличивая вероятность друг друга.

    Отношения между событиями. Примеры

    На примерах гораздо проще понять принципы теории вероятностей и комбинации событий.

    Опыт, который будет проводиться, заключается в вытаскивании шариков из ящика, а результата каждого опыта - элементарный исход.

    Событие - это один из возможных исходов опыта - красный шар, синий шар, шар с номером шесть и т. д.

    Испытание №1. Участвуют 6 шаров, три из которых окрашены в синий цвет, на них нанесены нечетные цифры, а три других - красные с четными цифрами.

    Испытание №2. Участвуют 6 шаров синего цвета с цифрами от одного до шести.

    Исходя из этого примера, можно назвать комбинации:

    • Достоверное событие. В исп. №2 событие «достать синий шар» достоверное, поскольку вероятность его появления равна 1, так как все шары синие и промаха быть не может. Тогда как событие «достать шар с цифрой 1» - случайное.
    • Невозможное событие. В исп. №1 с синими и красными шарами событие «достать фиолетовый шар» невозможное, поскольку вероятность его появления равна 0.
    • Равновозможные события. В исп. №1 события «достать шар с цифрой 2» и «достать шар с цифрой 3» равновозможные, а события «достать шар с четным числом» и «достать шар с цифрой 2» имеют разную вероятность.
    • Совместимые события. Два раза подряд получить шестерку в процессе бросания игральной кости - это совместимые события.
    • Несовместимые события. В том же исп. №1 события «достать красный шар» и «достать шар с нечетным числом» не могут быть совмещены в одном и том же опыте.
    • Противоположные события. Наиболее яркий пример этого - подбрасывание монет, когда вытягивание орла равносильно невытягиванию решки, а сумма их вероятностей - это всегда 1 (полная группа).
    • Зависимые события . Так, в исп. №1 можно задаться целью извлечь два раза подряд красный шар. Его извлечение или неизвлечение в первый раз влияет на вероятность извлечения во второй раз.

    Видно, что первое событие существенно влияет на вероятность второго (40% и 60%).

    Формула вероятности события

    Переход от гадательных размышлений к точным данным происходит посредством перевода темы в математическую плоскость. То есть суждения о случайном событии вроде "большая вероятность" или "минимальная вероятность" можно перевести к конкретным числовым данным. Такой материал уже допустимо оценивать, сравнивать и вводить в более сложные расчеты.

    С точки зрения расчета, определение вероятности события - это отношение количества элементарных положительных исходов к количеству всех возможных исходов опыта относительно определенного события. Обозначается вероятность через Р(А), где Р означает слово «probabilite», что с французского переводится как «вероятность».

    Итак, формула вероятности события:

    Где m - количество благоприятных исходов для события А, n - сумма всех исходов, возможных для этого опыта. При этом вероятность события всегда лежит между 0 и 1:

    0 ≤ Р(А)≤ 1.

    Расчет вероятности события. Пример

    Возьмем исп. №1 с шарами, которое описано ранее: 3 синих шара с цифрами 1/3/5 и 3 красных с цифрами 2/4/6.

    На основании этого испытания можно рассматривать несколько разных задач:

    • A - выпадение красного шара. Красных шаров 3, а всего вариантов 6. Это простейший пример, в котором вероятность события равна Р(А)=3/6=0,5.
    • B - выпадение четного числа. Всего четных чисел 3 (2,4,6), а общее количество возможных числовых вариантов - 6. Вероятность этого события равна Р(B)=3/6=0,5.
    • C - выпадение числа, большего, чем 2. Всего таких вариантов 4 (3,4,5,6) из общего количества возможных исходов 6. Вероятность события С равна Р(С)=4/6=0,67.

    Как видно из расчетов, событие С имеет большую вероятность, поскольку количество вероятных положительных исходов выше, чем в А и В.

    Несовместные события

    Такие события не могут одновременно появиться в одном и том же опыте. Как в исп. №1 невозможно одновременно достать синий и красный шар. То есть можно достать либо синий, либо красный шар. Точно так же в игральной кости не могут одновременно появиться четное и нечетное число.

    Вероятность двух событий рассматривается как вероятность их суммы или произведения. Суммой таких событий А+В считается такое событие, которое состоит в появлении события А или В, а произведение их АВ - в появлении обоих. Например, появление двух шестерок сразу на гранях двух кубиков в одном броске.

    Сумма нескольких событий являет собой событие, предполагающее появление, по крайней мере, одного из них. Произведение нескольких событий - это совместное появление их всех.

    В теории вероятности, как правило, употребление союза "и" обозначает сумму, союза "или" - умножение. Формулы с примерами помогут понять логику сложения и умножения в теории вероятностей.

    Вероятность суммы несовместных событий

    Если рассматривается вероятность несовместных событий, то вероятность суммы событий равна сложению их вероятностей:

    Р(А+В)=Р(А)+Р(В)

    Например: вычислим вероятность того, что в исп. №1 с синими и красными шарами выпадет число между 1 и 4. Рассчитаем не в одно действие, а суммой вероятностей элементарных составляющих. Итак, в таком опыте всего 6 шаров или 6 всех возможных исходов. Цифры, которые удовлетворяют условие, - 2 и 3. Вероятность выпадения цифры 2 составляет 1/6, вероятность цифра 3 также 1/6. Вероятность того, что выпадет цифра между 1 и 4 равна:

    Вероятность суммы несовместимых событий полной группы равна 1.

    Так, если в опыте с кубиком сложить вероятности выпадения всех цифр, то в результате получим единицу.

    Также это справедливо для противоположных событий, например в опыте с монетой, где одна ее сторона - это событие А, а другая - противоположное событие Ā, как известно,

    Р(А) + Р(Ā) = 1

    Вероятность произведения несовместных событий

    Умножение вероятностей применяют, когда рассматривают появление двух и более несовместных событий в одном наблюдении. Вероятность того, что в нем появятся события A и B одновременно, равна произведению их вероятностей, или:

    Р(А*В)=Р(А)*Р(В)

    Например, вероятность того, что в исп. №1 в результате двух попыток два раза появится синий шар, равна

    То есть вероятность наступления события, когда в результате двух попыток с извлечением шаров будет извлечены только синие шары, равна 25%. Очень легко проделать практические эксперименты этой задачи и увидеть, так ли это на самом деле.

    Совместные события

    События считаются совместными, когда появление одного из них может совпасть с появлением другого. Несмотря на то что они совместные, рассматривается вероятность независимых событий. К примеру, бросание двух игральных костей может дать результат, когда на обеих из них выпадает цифра 6. Хотя события совпали и появились одновременно, они независимы друг от друга - могла выпасть всего одна шестерка, вторая кость на нее влияния не имеет.

    Вероятность совместных событий рассматривают как вероятность их суммы.

    Вероятность суммы совместных событий. Пример

    Вероятность суммы событий А и В, которые по отношению к друг другу совместные, равняется сумме вероятностей события за вычетом вероятности их произведения (то есть их совместного осуществления):

    Р совместн. (А+В)=Р(А)+Р(В)- Р(АВ)

    Допустим, что вероятность попадания в мишень одним выстрелом равна 0,4. Тогда событие А - попадание в мишень в первой попытке, В - во второй. Эти события совместные, поскольку не исключено, что можно поразить мишень и с первого, и со второго выстрела. Но события не являются зависимыми. Какова вероятность наступления события поражения мишени с двух выстрелов (хотя бы с одного)? Согласно формуле:

    0,4+0,4-0,4*0,4=0,64

    Ответ на вопрос следующий: "Вероятность попасть в цель с двух выстрелов равна 64%".

    Эта формула вероятности события может быть применима и к несовместным событиям, где вероятность совместно появления события Р(АВ) = 0. Это значит, что вероятность суммы несовместных событий можно считать частным случаем предложенной формулы.

    Геометрия вероятности для наглядности

    Интересно, что вероятность суммы совместных событий может быть представлена в виде двух областей А и В, которые пересекаются между собой. Как видно из картинки, площадь их объединения равна общей площади за минусом области их пересечения. Это геометрическое пояснения делают более понятной нелогичную на первый взгляд формулу. Отметим, что геометрические решения - не редкость в теории вероятностей.

    Определение вероятности суммы множества (больше двух) совместных событий довольно громоздкое. Чтобы вычислить ее, нужно воспользоваться формулами, которые предусмотрены для этих случаев.

    Зависимые события

    Зависимыми события называются в случае, если наступление одного (А) из них влияет на вероятность наступления другого (В). Причем учитывается влияние как появления события А, так и его непоявление. Хотя события и называются зависимыми по определению, но зависимо лишь одно из них (В). Обычная вероятность обозначалась как Р(В) или вероятность независимых событий. В случае с зависимыми вводится новое понятие - условная вероятность Р A (В) , которая является вероятностью зависимого события В при условии произошедшего события А (гипотезы), от которого оно зависит.

    Но ведь событие А тоже случайно, поэтому у него также есть вероятность, которую нужно и можно учитывать в осуществляемых расчетах. Далее на примере будет показано, как работать с зависимыми событиями и гипотезой.

    Пример расчета вероятности зависимых событий

    Хорошим примером для расчета зависимых событий может стать стандартная колода карт.

    На примере колоды в 36 карт рассмотрим зависимые события. Нужно определить вероятность того, что вторая карта, извлеченная из колоды, будет бубновой масти, если первая извлеченная:

    1. Бубновая.
    2. Другой масти.

    Очевидно, что вероятность второго события В зависит от первого А. Так, если справедлив первый вариант, что в колоде стало на 1 карту (35) и на 1 бубну (8) меньше, вероятность события В:

    Р A (В) =8/35=0,23

    Если же справедлив второй вариант, то в колоде стало 35 карт, и по-прежнему сохранилось полное число бубен (9), тогда вероятность следующего события В:

    Р A (В) =9/35=0,26.

    Видно, что если событие А условлено в том, что первая карта - бубна, то вероятность события В уменьшается, и наоборот.

    Умножение зависимых событий

    Руководствуясь предыдущей главой, мы принимаем первое событие (А) как факт, но если говорить по сути, оно имеет случайный характер. Вероятность этого события, а именно извлечение бубны из колоды карт, равна:

    Р(А) = 9/36=1/4

    Поскольку теория не существует сама по себе, а призвана служить в практических целях, то справедливо отметить, что чаще всего нужна вероятность произведения зависимых событий.

    Согласно теореме о произведении вероятностей зависимых событий, вероятность появления совместно зависимых событий А и В равна вероятности одного события А, умноженная на условную вероятность события В (зависимого от А):

    Р(АВ) = Р (А) *Р A (В)

    Тогда в примере с колодой вероятность извлечения двух карт с мастью бубны равна:

    9/36*8/35=0,0571, или 5,7%

    И вероятность извлечения вначале не бубны, а потом бубны, равна:

    27/36*9/35=0,19, или 19%

    Видно, что вероятность появления события В больше при условии, что первой извлекается карта масти, отличной от бубны. Такой результат вполне логичный и понятный.

    Полная вероятность события

    Когда задача с условными вероятностями становится многогранной, то обычными методами ее вычислить нельзя. Когда гипотез больше двух, а именно А1,А2,…,А n , ..образует полную группу событий при условии:

    • P(A i)>0, i=1,2,…
    • A i ∩ A j =Ø,i≠j.
    • Σ k A k =Ω.

    Итак, формула полной вероятности для события В при полной группе случайных событий А1,А2,…,А n равна:

    Взгляд в будущее

    Вероятность случайного события крайне необходима во многих сферах науки: эконометрике, статистике, в физике и т. д. Поскольку некоторые процессы невозможно описать детерминировано, так как они сами имеют вероятностный характер, необходимы особые методы работы. Теория вероятности события может быть использована в любой технологичной сфере как способ определить возможность ошибки или неисправности.

    Можно сказать, что, узнавая вероятность, мы некоторым образом делаем теоретический шаг в будущее, разглядывая его через призму формул.

    Вероятность наступления события в некотором испытании равна отношению , где:

    Общее число всех равновозможных , элементарных исходов данного испытания, которые образуют полную группу событий ;

    Количество элементарных исходов, благоприятствующих событию .

    Задача 1

    В урне находится 15 белых, 5 красных и 10 чёрных шаров. Наугад извлекается 1 шар, найти вероятность того, что он будет: а) белым, б) красным, в) чёрным.

    Решение : важнейшей предпосылкой для использования классического определения вероятности является возможность подсчёта общего количества исходов .

    Всего в урне: 15 + 5 + 10 = 30 шаров, и, очевидно, справедливы следующие факты:

    Извлечение любого шара одинаково возможно (равновозможность исходов) , при этом исходы элементарны и образуют полную группу событий (т.е. в результате испытания обязательно будет извлечён какой-то один из 30-ти шаров) .

    Таким образом, общее число исходов:

    Рассмотрим событие: - из урны будет извлечён белый шар. Данному событию благоприятствуют элементарных исходов, поэтому по классическому определению:
    - вероятность того, то из урны будет извлечён белый шар.

    Как ни странно, даже в такой простой задаче можно допустить серьёзную неточность. Где здесь подводный камень? Здесь некорректно рассуждать, что «раз половина шаров белые, то вероятность извлечения белого шара » . В классическом определении вероятности речь идёт об ЭЛЕМЕНТАРНЫХ исходах, и дробь следует обязательно прописать!

    С другими пунктами аналогично, рассмотрим следующие события:

    Из урны будет извлечён красный шар;
    - из урны будет извлечён чёрный шар.

    Событию благоприятствует 5 элементарных исходов, а событию - 10 элементарных исходов. Таким образом, соответствующие вероятности:

    Типичная проверка многих задач по терверу осуществляется с помощью теоремы о сумме вероятностей событий, образующих полную группу . В нашем случае события образуют полную группу, а значит, сумма соответствующих вероятностей должна обязательно равняться единице: .

    Проверим, так ли это: , в чём и хотелось убедиться.

    Ответ :

    На практике распространён «скоростной» вариант оформления решения :

    Всего: 15 + 5 + 10 = 30 шаров в урне. По классическому определению:
    - вероятность того, то из урны будет извлечён белый шар;
    - вероятность того, то из урны будет извлечён красный шар;
    - вероятность того, то из урны будет извлечён чёрный шар.

    Ответ :

    Задача 2

    В магазин поступило 30 холодильников, пять из которых имеют заводской дефект. Случайным образом выбирают один холодильник. Какова вероятность того, что он будет без дефекта?


    Задача 3

    Набирая номер телефона, абонент забыл две последние цифры, но помнит, что одна из них - ноль, а другая - нечётная. Найти вероятность того, что он наберёт правильный номер.

    Примечание : ноль - это чётное число (делится на 2 без остатка)

    Решение : сначала найдём общее количество исходов. По условию, абонент помнит, что одна из цифр - ноль, а другая цифра - нечётная. Здесь рациональнее не мудрить с комбинаторикой и воспользоваться методом прямого перечисления исходов . То есть, при оформлении решения просто записываем все комбинации:

    01, 03, 05, 07, 09

    10, 30, 50, 70, 90

    И подсчитываем их - всего: 10 исходов.

    Благоприятствующий исход один: верный номер.

    По классическому определению:
    - вероятность того, что абонент наберёт правильный номер

    Ответ : 0,1

    Продвинутая задача для самостоятельного решения:

    Задача 4

    Абонент забыл пин - код к своей сим-карте, однако помнит, что он содержит три «пятёрки», а одна из цифр - то ли «семёрка», то ли «восьмёрка». Какова вероятность успешной авторизации с первой попытки?

    Здесь ещё можно развить мысль о вероятности того, что абонента ждёт кара в виде пук-кода, но, к сожалению, рассуждения уже выйдут за рамки данного урока

    Решение и ответ внизу.

    Иногда перечисление комбинаций оказывается весьма кропотливым занятием. В частности, так обстоят дела в следующей, не менее популярной группе задач, где подкидываются 2 игральных кубика (реже - большее количество) :

    Задача 5

    Найти вероятность того, что при бросании двух игральных костей в сумме выпадет:

    а) пять очков;

    б) не более четырёх очков;

    в) от 3-х до 9 очков включительно.

    Решение : найдём общее количество исходов:

    Способами может выпасть грань 1-го кубика и способами может выпасть грань 2-го кубика; по правилу умножения комбинаций , всего: возможных комбинаций. Иными словами, каждая грань 1-го кубика может составить упорядоченную пару с каждой гранью 2-го кубика. Условимся записывать такую пару в виде , где - цифра, выпавшая на 1-м кубике, - цифра, выпавшая на 2-м кубике.

    Например:

    На первом кубике выпало 3 очка, на втором - 5 очков, сумма очков: 3 + 5 = 8;
    - на первом кубике выпало 6 очков, на втором - 1 очко, сумма очков: 6 + 1 = 7;
    - на обеих костях выпало 2 очка, сумма: 2 + 2 = 4.

    Очевидно, что наименьшую сумму даёт пара , а наибольшую - две «шестёрки».

    а) Рассмотрим событие: - при бросании двух игральных костей выпадет 5 очков. Запишем и подсчитаем количество исходов, которые благоприятствуют данному событию:

    Итого: 4 благоприятствующих исхода. По классическому определению:
    - искомая вероятность.

    б) Рассмотрим событие: - выпадет не более 4-х очков. То есть, либо 2, либо 3, либо 4 очка. Снова перечисляем и подсчитываем благоприятствующие комбинации, слева я буду записывать суммарное количество очков, а после двоеточия - подходящие пары:

    Итого: 6 благоприятствующих комбинаций. Таким образом:
    - вероятность того, что выпадет не более 4-х очков.

    в) Рассмотрим событие: - выпадет от 3-х до 9 очков включительно. Здесь можно пойти прямой дорогой, но… что-то не хочется. Да, некоторые пары уже перечислены в предыдущих пунктах, но работы все равно предстоит многовато.

    Как лучше поступить? В подобных случаях рациональным оказывается окольный путь. Рассмотрим противоположное событие : - выпадет 2 или 10 или 11 или 12 очков.

    В чём смысл? Противоположному событию благоприятствует значительно меньшее количество пар:

    Итого: 7 благоприятствующих исходов.

    По классическому определению:
    - вероятность того, что выпадет меньше трёх или больше 9-ти очков.

    Особо щепетильные люди могут перечислить все 29 пар, выполнив тем самым проверку.

    Ответ :

    В следующей задаче повторим таблицу умножения:

    Задача 6

    Найти вероятность того, что при броске двух игральных костей произведение очков:

    а) будет равно семи;

    б) окажется не менее 20-ти;

    в) будет чётным.

    Краткое решение и ответ в конце урока.

    Задача 7

    В лифт 20-этажного дома на первом этаже зашли 3 человека. И поехали. Найти вероятность того, что:

    а) они выйдут на разных этажах;

    б) двое выйдут на одном этаже;

    в) все выйдут на одном этаже.

    Решение : вычислим общее количество исходов: способами может выйти из лифта 1-й пассажир и способами - 2-й пассажир и способами - третий пассажир. По правилу умножения комбинаций: возможных исходов. То есть, каждый этаж выхода 1-го человека может комбинироваться с каждым этажом выхода 2-го человека и с каждым этажом выхода 3-го человека.

    Второй способ основан на размещениях с повторениями :
    - кому как понятнее.

    а) Рассмотрим событие: - пассажиры выйдут на разных этажах. Вычислим количество благоприятствующих исходов:
    способами могут выйти 3 пассажира на разных этажах. Рассуждения по формуле проведите самостоятельно.

    По классическому определению:

    в) Рассмотрим событие: - пассажиры выйдут на одном этаже. Данному событию благоприятствуют исходов и по классическому определению, соответствующая вероятность: .

    Заходим с чёрного хода:

    б) Рассмотрим событие: - два человека выйдут на одном этаже (и, соответственно, третий - на другом) .

    События образуют полную группу (считаем, что в лифте никто не уснёт и лифт не застрянет , а значит, .

    В результате, искомая вероятность:

    Таким образом, теорема о сложении вероятностей событий, образующих полную группу , может быть не только удобной, но и стать самой настоящей палочкой-выручалочкой!

    Ответ :

    Когда получаются большие дроби, то хорошим тоном будет указать их приближенные десятичные значения. Обычно округляют до 2-3-4-х знаков после запятой.

    Поскольку события пунктов «а», «бэ», «вэ» образуют полную группу, то есть смысл выполнить контрольную проверку, причём, лучше с приближенными значениями:

    Что и требовалось проверить.

    Иногда по причине погрешности округлений может получиться 0,9999 либо 1,0001, в этом случае одно из приближенных значений следуют «подогнать» так, чтобы в сумме нарисовалась «чистая» единица.

    Самостоятельно:

    Задача 8

    Подбрасывается 10 монет. Найти вероятность того, что:

    а) на всех монетах выпадет орёл;

    б) на 9 монетах выпадет орёл, а на одной - решка;

    в) орёл выпадет на половине монет.

    Задача 9

    На семиместную скамейку случайным образом рассаживается 7 человек. Какова вероятность того, что два определённых человека окажутся рядом?

    Решение : с общим количеством исходов проблем не возникает:
    способами могут рассесться 7 человек на скамейке.

    Но вот как подсчитать количество благоприятствующих исходов? Тривиальные формулы не подходят и единственный путь - это логические рассуждения. Сначала рассмотрим ситуацию, когда Саша и Маша оказались рядом на левом краю скамейки:

    Очевидно, что порядок имеет значение: слева может сидеть Саша, справа Маша и наоборот. Но это ещё не всё - для каждого из этих двух случаев остальные люди могут рассесться на свободных местах способами. Выражаясь комбинаторно, Сашу и Машу можно переставить на соседних местах способами и для каждой такой перестановки других людей можно переставить способами.

    Таким образом, по правилу умножения комбинаций, выходит благоприятствующих исходов.

    Но и это ещё не всё! Перечисленные факты справедливы для каждой пары соседних мест:

    Интересно отметить, что если скамейку «скруглить» (соединяя левое и правое место) , то образуется дополнительная, седьмая пара соседних мест. Но не будем отвлекаться. Согласно тому же принципу умножения комбинаций, получаем окончательное количество благоприятствующих исходов:

    По классическому определению:
    - вероятность того, что два определённых человека окажутся рядом.

    Ответ :

    Задача 10

    На шахматную доску из 64 клеток ставят наудачу две ладьи белого и чёрного цвета. С какой вероятностью они не будут «бить» друг друга?

    Справка : шахматная доска имеет размер клеток; черная и белая ладьи «бьют» друг друга, когда располагаются на одной горизонтали или на одной вертикали

    Обязательно выполните схематический чертёж доски, а ещё лучше, если неподалёку есть шахматы. Одно дело рассуждения на бумаге, и совсем другое - когда расставляешь фигуры собственными руками.

    Задача 11

    Какова вероятность того, что в четырех сданных картах будет один туз и один король?

    Вычислим общее количество исходов. Сколькими способами можно извлечь 4 карты из колоды? Наверное, все поняли, что речь идёт о количестве сочетаний :
    способами можно выбрать 4 карты из колоды.

    Теперь считаем благоприятствующие исходы. По условию, в выборке из 4-х карт должен быть один туз, один король и, о чём не сказано открытым текстом, - две другие карты :

    Способами можно извлечь одного туза;
    способами можно выбрать одного короля.

    Исключаем из рассмотрения тузов и королей: 36 - 4 - 4 = 28

    способами можно извлечь две другие карты.

    По правилу умножения комбинаций:
    способами можно извлечь искомую комбинацию карт (1-го туза и 1-го короля и две другие карты).

    Прокомментирую комбинационный смысл записи другим способом:
    каждый туз комбинируется с каждым королем и с каждой возможной парой других карт.

    По классическому определению:
    - вероятность того, что среди четырех сданных карт будет один туз и один король.

    Если хватает времени и терпения, максимально сокращайте большие дроби.

    Ответ :

    Более простая задача для самостоятельного решения:

    Задача 12

    В ящике находится 15 качественных и 5 бракованных деталей. Наудачу извлекаются 2 детали.

    Найти вероятность того, что:

    а) обе детали будут качественными;

    б) одна деталь будет качественной, а одна - бракованной;

    в) обе детали бракованны.

    События перечисленных пунктов образуют полную группу, поэтому проверка здесь напрашивается сама собой. Краткое решение и ответ в конце урока. А вообще, всё самое интересное только начинается!

    Задача 13

    Студент знает ответы на 25 экзаменационных вопросов из 60-ти. Какова вероятность сдать экзамен, если для этого необходимо ответить не менее чем на 2 из 3-х вопросов?

    Решение : итак, расклад таков: всего 60 вопросов, среди которых 25 «хороших» и, соответственно, 60 - 25 = 35 «плохих». Ситуация шаткая и не в пользу студента. Давайте узнаем, насколько хороши его шансы:

    способами можно выбрать 3 вопроса из 60-ти (общее количество исходов) .

    Для того чтобы сдать экзамен, нужно ответить на 2 или 3 вопроса. Считаем благоприятствующие комбинации:

    Способами можно выбрать 2 «хороших» вопроса и один «плохой»;

    способами можно выбрать 3 «хороших» вопроса.

    По правилу сложения комбинаций :
    способами можно выбрать благоприятствующую для сдачи экзамена комбинацию 3-х вопросов (без разницы с двумя или тремя «хорошими» вопросами) .

    По классическому определению:

    Ответ :

    Задача 14

    Игроку в покер сдаётся 5 карт. Найти вероятность того, что:

    а) среди этих карт будет пара десяток и пара валетов;
    б) игроку будет сдан флеш (5 карт одной масти);
    в) игроку будет сдано каре (4 карты одного номинала).

    Какую из перечисленных комбинаций вероятнее всего получить?

    ! Внимание! Если в условии задан подобный вопрос, то на него необходимо дать ответ.
    Справка : в покер традиционно играют 52-х карточной колодой, которая содержит карты 4-х мастей номиналом от «двоек» до тузов.

    Покер - игра самая что ни на есть математическая (кто играет, тот знает), в которой можно обладать заметным преимуществом перед менее квалифицированными соперниками.

    Решения и ответы :

    Задача 2: Решение : 30 - 5 = 25 холодильников не имеют дефекта.

    - вероятность того, что наугад выбранный холодильник не имеет дефекта.
    Ответ :

    Задача 4: Решение : найдём общее число исходов:
    способами можно выбрать место, на котором расположена сомнительная цифра и на каждом из этих 4-х мест могут располагаться 2 цифры (семёрка или восьмёрка). По правилу умножения комбинаций, общее число исходов: .
    Как вариант, в решении можно просто перечислить все исходы (благо их немного):

    7555, 8555, 5755, 5855, 5575, 5585, 5557, 5558

    Благоприятствующий исход один (правильный пин-код).

    Таким образом, по классическому определению:
    - вероятность того, что абонент авторизируется с 1-й попытки
    Ответ :

    Задача 6: Решение

    Задача 6: Решение : найдём общее количество исходов:
    способами могут выпасть цифры на 2-х кубиках.

    а) Рассмотрим событие: - при броске двух игральных костей произведение очков будет равно семи. Для данного события не существует благоприятствующих исходов,
    , т.е. это событие является невозможным.

    б) Рассмотрим событие: - при броске двух игральных костей произведение очков окажется не менее 20-ти. Данному событию благоприятствуют следующие исходы:

    Итого: 8

    По классическому определению:

    - искомая вероятность.

    в) Рассмотрим противоположные события:

    - произведение очков будет чётным;

    - произведение очков будет нечётным.

    Перечислим все исходы, благоприятствующие событию :

    Итого: 9 благоприятствующих исходов.

    По классическому определению вероятности:

    Противоположные события образуют полную группу, поэтому:

    - искомая вероятность.

    Ответ :

    Задача 8: Решение способами могут упасть 2 монеты.
    Другой путь: способами может упасть 1-ая монета и способами может упасть 2-ая монета и и способами может упасть 10-ая монета. По правилу умножения комбинаций, 10 монет могут упасть способами.
    а) Рассмотрим событие: - на всех монетах выпадет орёл. Данному событию благоприятствует единственный исход, по классическому определению вероятности: .
    б) Рассмотрим событие: - на 9 монетах выпадет орёл, а на одной - решка.
    Существует монет, на которых может выпасть решка. По классическому определению вероятности: .
    в) Рассмотрим событие: - орёл выпадет на половине монет.
    Существует уникальных комбинаций из пяти монет, на которых может выпасть орёл. По классическому определению вероятности:
    Ответ :

    Задача 10: Решение : вычислим общее количество исходов:
    способами можно расставить двух ладей на доске.
    Другой вариант оформления: способами можно выбрать две клетки шахматной доски и способами поставить белую и чёрную ладью в каждом из 2016 случаев. Таким образом, общее число исходов: .

    Теперь подсчитаем исходы, в которых ладьи «бьют» друг друга. Рассмотрим 1-ую горизонталь. Очевидно, что фигуры можно расставить на ней произвольным образом, например, так:

    Кроме того, ладей можно переставить. Придаём рассуждениям числовую форму: способами можно выбрать две клетки и способами переставить ладей в каждом из 28 случаев. Всего: возможных расположений фигур на горизонтали.
    Короткая версия оформления: способами можно разместить белую и чёрную ладью на 1-й горизонтали.

    Проведённые рассуждения справедливы для каждой горизонтали, поэтому количество комбинаций следует умножить на восемь: . Кроме того, аналогичная история справедлива для любой из восьми вертикалей. Вычислим итоговое количество расстановок, в которых фигуры «бьют» друг друга:

    Тогда в оставшихся вариантах расстановки ладьи не будут «бить» друг друга:
    4032 - 896 = 3136

    По классическому определению вероятности:
    - вероятность того, что наугад поставленные на доску белая и чёрная ладья не будут «бить» друг друга.

    Ответ :

    Задача 12: Решение : всего: 15 + 5 = 20 деталей в ящике. Вычислим общее число исходов:
    способами можно извлечь 2 детали из ящика.
    а) Рассмотрим событие: - обе извлечённые детали будут качественными.
    способами можно извлечь 2 качественные детали.
    По классическому определению вероятности:
    б) Рассмотрим событие: - одна деталь будет качественной, а одна - бракованной.
    способами можно извлечь 1 качественную деталь и 1 бракованную.
    По классическому определению:
    в) Рассмотрим событие: - обе извлечённые детали бракованны.
    способами можно извлечь 2 бракованные детали.
    По классическому определению:
    Проверка : вычислим сумму вероятностей событий, образующих полную группу: , что и требовалось проверить.
    Ответ :

    А сейчас возьмём в руки уже знакомое и безотказное орудие учёбы - игральный кубик с полной группой событий , которые состоят в том, что при его броске выпадут 1, 2, 3, 4, 5 и 6 очков соответственно.

    Рассмотрим событие - в результате броска игральной кости выпадет не менее пяти очков. Данное событие состоит в двух несовместных исходах: (выпадет 5 или 6 очков)
    - вероятность того, что в результате броска игральной кости выпадет не менее пяти очков.

    Рассмотрим событие , состоящее в том, что выпадет не более 4-х очков и найдем его вероятность. По теореме сложения вероятностей несовместных событий:

    Возможно, некоторые читатели ещё не до конца осознали суть несовместности. Вдумаемся ещё раз: студент не может ответить на 2 вопроса из 3-х и в то же самое время ответить на все 3 вопроса. Таким образом, события и - несовместны.

    Теперь, пользуясь классическим определением , найдём их вероятности:

    Факт успешной сдачи экзамена выражается суммой (ответ на 2 вопроса из 3-х или на все вопросы) . По теореме сложения вероятностей несовместных событий:
    - вероятность того, что студент сдаст экзамен.

    Этот способ решения совершенно равноценен, выбирайте, какой больше нравится.

    Задача 1

    Магазин получил продукцию в ящиках с четырех оптовых складов: четыре с 1-го, пять со 2-го, семь с 3-го и четыре с 4-го. Случайным образом выбран ящик для продажи. Какова вероятность того, что это будет ящик с первого или третьего склада.

    Решение : всего получено магазином: 4 + 5 + 7 + 4 = 20 ящиков.

    В данной задаче удобнее воспользоваться «быстрым» способом оформления без расписывания событий большими латинскими буквами. По классическому определению:
    - вероятность того, что для продажи будет выбран ящик с 1-го склада;
    - вероятность того, что для продажи будет выбран ящик с 3-го склада.

    По теореме сложения несовместных событий:
    - вероятность того, что для продажи будет выбран ящик с первого или третьего склада.

    Ответ : 0,55

    Безусловно, задача разрешима и чисто через классическое определение вероятности путём непосредственного подсчёта кол-ва благоприятствующих исходов (4 + 7 = 11), но рассмотренный способ ничем не хуже. И даже чётче.

    Задача 2

    В коробке 10 красных и 6 синих пуговиц. Наудачу извлекаются две пуговицы. Какова вероятность того, что они будут одноцветными?

    Аналогично - здесь можно использовать комбинаторное правило суммы , но мало ли … вдруг кто-то его запамятовал. Тогда на помощь придёт теорема сложения вероятностей несовместных событий!

    Приведенные к настоящему моменту в открытом банке задач ЕГЭ по математике (mathege.ru), решение которых основано на одной лишь формуле, представляющей собой классическое определение вероятности.

    Понять формулу проще всего на примерах.
    Пример 1. В корзине 9 красных шаров и 3 синих. Шары различаются только цветом. Наугад (не глядя) достаём один из них. Какова вероятность того, что выбранный таким образом шар окажется синего цвета?

    Комментарий. В задачах по теории вероятности происходит нечто (в данном случае наше действие по вытаскиванию шара), что может иметь разный результат - исход. Нужно заметить, что на результат можно смотреть по-разному. "Мы вытащили какой-то шар" - тоже результат. "Мы вытащили синий шар" - результат. "Мы вытащили именно вот этот шар из всех возможных шаров" - такой наименее обобщенный взгляд на результат называется элементарным исходом. Именно элементарные исходы имеются в виду в формуле для вычисления вероятности.

    Решение. Теперь вычислим вероятность выбора синего шара.
    Событие А: "выбранный шар оказался синего цвета"
    Общее число всех возможных исходов: 9+3=12 (количество всех шаров, которые мы могли бы вытащить)
    Число благоприятных для события А исходов: 3 (количество таких исходов, при которых событие А произошло, - то есть, количество синих шаров)
    P(A)=3/12=1/4=0,25
    Ответ: 0,25

    Посчитаем для той же задачи вероятность выбора красного шара.
    Общее число возможных исходов останется тем же, 12. Число благоприятных исходов: 9. Искомая вероятность: 9/12=3/4=0,75

    Вероятность любого события всегда лежит в пределах от 0 до 1.
    Иногда в повседневной речи (но не в теории вероятности!) вероятность событий оценивают в процентах. Переход между математической и разговорной оценкой осуществляется путем умножения (или деления) на 100%.
    Итак,
    При этом вероятность равна нулю у событий, которые не могут произойти - невероятны. Например, в нашем примере это была бы вероятность вытащить из корзины зеленый шар. (Число благоприятных исходов равно 0, Р(А)=0/12=0, если считать по формуле)
    Вероятность 1 имеют события, которые абсолютно точно произойдут, без вариантов. Например, вероятность того, что «выбранный шар окажется или красным или синим» - для нашей задачи. (Число благоприятных исходов: 12, Р(А)=12/12=1)

    Мы рассмотрели классический пример, иллюстрирующий определение вероятности. Все подобные задачи ЕГЭ по теории вероятности решаются применением данной формулы.
    На месте красных и синих шаров могут быть яблоки и груши, мальчики и девочки, выученные и невыученные билеты, билеты, содержащие и не содержащие вопрос по какой-то теме (прототипы , ), бракованные и качественные сумки или садовые насосы (прототипы , ) – принцип остается тем же.

    Немного отличаются формулировкой задачи теории вероятности ЕГЭ, где нужно вычислить вероятность выпадения какого-то события на определенный день. ( , ) Как и в предыдущих задачах нужно определить, что является элементарным исходом, после чего применить ту же формулу.

    Пример 2. Конференция длится три дня. В первый и второй день выступают по 15 докладчиков, в третий день – 20. Какова вероятность того, что доклад профессора М. выпадет на третий день, если порядок докладов определяется жеребьевкой?

    Что здесь является элементарным исходом? – Присвоение докладу профессора какого-то одного из всех возможных порядковых номеров для выступления. В жеребьевке участвует 15+15+20=50 человек. Таким образом, доклад профессора М. может получить один из 50 номеров. Значит, и элементарных исходов всего 50.
    А какие исходы благоприятные? – Те, при которых окажется, что профессор будет выступать в третий день. То есть, последние 20 номеров.
    По формуле вероятность P(A)= 20/50=2/5=4/10=0,4
    Ответ: 0,4

    Жеребьевка здесь представляет собой установление случайного соответствия между людьми и упорядоченными местами. В примере 2 установление соответствия рассматривалось с точки зрения того, какое из мест мог бы занять конкретный человек. Можно к той же ситуации подходить с другой стороны: кто из людей с какой вероятностью мог бы попасть на конкретное место (прототипы , , , ):

    Пример 3. В жеребьевке участвуют 5 немцев, 8 французов и 3 эстонца. Какова вероятность того, что первым (/вторым/седьмым/последним – не важно) будет выступать француз.

    Количество элементарных исходов – количество всех возможных людей, которые могли бы по жеребьевке попасть на данное место. 5+8+3=16 человек.
    Благоприятные исходы – французы. 8 человек.
    Искомая вероятность: 8/16=1/2=0,5
    Ответ: 0,5

    Немного отличается прототип . Остались задачи про монеты () и игральные кости (), несколько более творческие. Решение этих задач можно посмотреть на страницах прототипов.

    Приведем несколько примеров на бросание монеты или кубика.

    Пример 4. Когда подбрасываем монету, какова вероятность выпадения решки?
    Исходов 2 – орел или решка. (считается, что монета никогда не падает на ребро) Благоприятный исход – решка, 1.
    Вероятность 1/2=0,5
    Ответ: 0,5.

    Пример 5. А если подбрасываем монету два раза? Какова вероятность того, что оба раза выпадет орел?
    Главное определить, какие элементарные исходы будем рассматривать при подбрасывании двух монет. После подбрасывания двух монет может получиться один из следующих результатов:
    1) PP – оба раза выпала решка
    2) PO – первый раз решка, второй раз орел
    3) OP – первый раз орел, второй раз решка
    4) OO – оба раза выпал орел
    Других вариантов нет. Значит, элементарных исходов 4. Благоприятный из них только первый, 1.
    Вероятность: 1/4=0,25
    Ответ: 0,25

    Какова вероятность того, что из двух подбрасываний монеты один раз выпадет решка?
    Количество элементарных исходов то же, 4. Благоприятные исходы – второй и третий, 2.
    Вероятность выпадения одной решки: 2/4=0,5

    В таких задачах может пригодиться ещё одна формула.
    Если при одном бросании монеты возможных вариантов результата у нас 2, то для двух бросаний результатов будет 2·2=2 2 =4 (как в примере 5), для трех бросаний 2·2·2=2 3 =8, для четырех: 2·2·2·2=2 4 =16, … для N бросаний возможных результатов будет 2·2·...·2=2 N .

    Так, можно найти вероятность выпадения 5 решек из 5 бросаний монеты.
    Общее число элементарных исходов: 2 5 =32.
    Благоприятных исходов: 1. (РРРРР – все 5 раз решка)
    Вероятность: 1/32=0,03125

    То же верно и для игральной кости. При одном бросании возможных результатов здесь 6. Значит, для двух бросаний: 6·6=36, для трех 6·6·6=216, и т. д.

    Пример 6. Бросаем игральную кость. Какова вероятность, что выпадет четное число?

    Всего исходов: 6, по числу граней.
    Благоприятных: 3 исхода. (2, 4, 6)
    Вероятность: 3/6=0,5

    Пример 7. Бросаем две игральные кости. Какова вероятность, что в сумме выпадет 10? (округлить до сотых)

    Для одного кубика 6 возможных исходов. Значит, для двух, по вышеупомянутому правилу, 6·6=36.
    Какие исходы будут благоприятными для того, чтоб в сумме выпало 10?
    10 надо разложить на сумму двух чисел от 1 до 6. Это можно сделать двумя способами: 10=6+4 и 10=5+5. Значит, для кубиков возможны варианты:
    (6 на первом и 4 на втором)
    (4 на первом и 6 на втором)
    (5 на первом и 5 на втором)
    Итого, 3 варианта. Искомая вероятность: 3/36=1/12=0,08
    Ответ: 0,08

    Другие типы задач B6 будут рассмотрены в одной из следующих статей «Как решать».

    Ясно, что каждое событие обладает той или иной степенью возможности своего наступления (своей реализации). Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определенное число, которое тем больше, чем более возможно событие. Такое число называется вероятностью события.

    Вероятность события – есть численная мера степени объективной возможности наступления этого события.

    Рассмотрим стохастический эксперимент и случайное событие А, наблюдаемое в этом эксперименте. Повторим этот эксперимент n раз и пусть m(A) – число экспериментов, в которых событие А произошло.

    Отношение (1.1)

    называется относительной частотой события А в проведенной серии экспериментов.

    Легко убедиться в справедливости свойств:

    если А и В несовместны (АВ= ), то ν(А+В) = ν(А) + ν(В) (1.2)

    Относительная частота определяется только после проведения серии экспериментов и, вообще говоря, может меняться от серии к серии. Однако опыт показывает, что во многих случаях при увеличении числа опытов относительная частота приближается к некоторому числу. Этот факт устойчивости относительной частоты неоднократно проверялся и может считаться экспериментально установленным.

    Пример 1.19. . Если бросить одну монету, никто не сможет предсказать, какой стороной она упадет кверху. Но если бросить две тонны монет, то каждый скажет, что примерно одна тонна упадет кверху гербом, то есть относительная частота выпадения герба примерно равна 0,5.

    Если при увеличении числа опытов относительная частота события ν(А) стремится к некоторому фиксированному числу, то говорят, что событие А статистически устойчиво , а это число называют вероятностью события А.

    Вероятностью события А называется некоторое фиксированное число Р(А), к которому стремится относительная частота ν(А) этого события при увеличении числа опытов, то есть,

    Это определение называют статистическим определением вероятности .

    Рассмотрим некий стохастический эксперимент и пусть пространство его элементарных событий состоит из конечного или бесконечного (но счетного) множества элементарных событий ω 1 , ω 2 , …, ω i , … . предположим, что каждому элементарному событию ω i прописан некоторое число - р i , характеризующее степень возможности появления данного элементарного события и удовлетворяющее следующим свойствам:

    Такое число p i называется вероятностью элементарного события ω i .

    Пусть теперь А- случайное событие, наблюдаемое в этом опыте, и ему соответствует некоторое множество

    В такой постановке вероятностью события А называют сумму вероятностей элементарных событий, благоприятствующих А (входящих в соответствующее множество А):


    (1.4)

    Введенная таким образом вероятность обладает теми же свойствами, что и относительная частота, а именно:

    И если АВ= (А и В несовместны),

    то P(А+В) = P(А) + P(В)

    Действительно, согласно (1.4)

    В последнем соотношении мы воспользовались тем, что ни одно элементарное событие не может благоприятствовать одновременно двум несовместным событиям.

    Особо отметим, что теория вероятностей не указывает способов определения р i , их надо искать из соображений практического характера или получать из соответствующего статистического эксперимента.

    В качестве примера рассмотрим классическую схему теории вероятностей. Для этого рассмотрим стохастический эксперимент, пространство элементарных событий которого состоит из конечного (n) числа элементов. Предположим дополнительно, что все эти элементарные события равновозможны, то есть вероятности элементарных событий равны p(ω i)=p i =p. Отсюда следует, что

    Пример 1.20 . При бросании симметричной монеты выпадение герба и «решки» равновозможны, их вероятности равны 0,5.

    Пример 1.21 . При бросании симметричного кубика все грани равновозможны, их вероятности равны 1/6.

    Пусть теперь событию А благоприятствует m элементарных событий, их обычно называют исходами, благоприятствующими событию А . Тогда

    Получили классическое определение вероятности : вероятность Р(А) события А равна отношению числа исходов, благоприятствующих событию А, к общему числу исходов

    Пример 1.22 . В урне лежит m белых шаров и n черных. Чему равна вероятность вытащить белый шар?

    Решение . Всего элементарных событий m+n. Они все равновероятны. Благоприятствующих событию А из них m. Следовательно, .

    Из определения вероятности вытекают следующие ее свойства:

    Свойство 1 . Вероятность достоверного события равна единице.

    Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует собы­тию. В этом случае т=п, следовательно,

    P(A)=m/n=n/n=1. (1.6)

    Свойство 2. Вероятность невозможного события равна нулю.

    Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае т = 0, следовательно, P(A)=m/n=0/n=0. (1.7)

    Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

    Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испы­тания. То есть, 0≤m≤n, значит, 0≤m/n≤1, следовательно, вероятность любого события удовлетворяет двойному неравенству 0≤P(A) 1. (1.8)

    Сопоставляя определения вероятности (1.5) и относительной частоты (1.1), заключаем: определение вероятности не требует, чтобы испытания производились в действительности; определение же относительной частоты предполагает, что испытания были произведены фактически . Другими словами, вероятность вычисляют до опыта, а относительную частоту - после опыта.

    Однако, вычисление вероятности требует наличия предварительной информации о количестве или вероятностях благоприятствующих данному событию элементарных исходов. В случае отсутствия такой предварительной информации для определения вероятности прибегают к эмпирическим данным, то есть, по результатам стохастического эксперимента определяют относительную частоту события.

    Пример 1.23 . Отдел технического контроля обнаружил 3 нестандартных детали в партии из 80 случайно отобранных деталей. Относительная частота появления нестандартных деталей r (А) = 3/80.

    Пример 1.24 . По цели.произвели 24 выстрела, причем было зарегистрировано 19 попаданий. Относительная частота поражения цели. r (А) =19/24.

    Длительные наблюдения показали, что если в одинаковых условиях производят опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости. Это свойство состоит в том, что в различных опытах относительная частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа. Оказалось, что это постоянное число можно принять за приближенное значение вероятности.

    Подробнее и точнее связь между относительной частотой и вероятностью будет изложена далее. Теперь же проиллюстрируем свойство устойчивости на примерах.

    Пример 1.25 . По данным шведской статистики, относительная частота рождения девочек за 1935 г. по месяцам характеризуется сле­дующими числами (числа расположены в порядке следования месяцев, начиная с января): 0,486; 0,489; 0,490; 0.471; 0,478; 0,482; 0.462; 0,484; 0,485; 0,491; 0,482; 0,473

    Относительная частота колеблется около числа 0,481, которое можно принять за приближеннее значение вероятности рождения девочек.

    Заметим, что статистические данные различных стран дают примерно то же значение относительной частоты.

    Пример 1.26. Многократно проводились опыты бросания монеты, в которых подсчитывали число появление «герба». Результаты нескольких опытов приведены в таблице.



    В продолжение темы:
    Детская мода

    Немногие понимают, какую силу они имеют в своих руках. Бывают моменты, когда собственные руки могут спасти или буквально предать, и все это происходит без вашего осознанного...

    Новые статьи
    /
    Популярные