Математическое ожидание ряда чисел. Формула математического ожидания

Средние значения случайных величин

Предположим, что Х – дискретная случайная величина, которая в результате эксперимента принимала значения x 1 , x 2 ,…, x n с вероятностями p 1 , p 2 ,…, p n , . Тогда средним значением или математическим ожиданием величины X называется сумма , т.е. средневзвешенное значение величины Х, где весами служат вероятности p i .

Пример . Определить среднее значение ошибки регулирования e, если на основании большого числа опытов установлено, что вероятность ошибки р i равна:

e, % 0,1 0,15 0,2 0,25 0,3
р i 0,2 0,2 0,3 0,15 0,15

1. M [e] = 0,1×0,2 + 0,15×0,2 + 0,2×0,3 + 0,25×0,15 + 0,3×0,15 =

В том случае, если g(Х ) является функцией X (причем вероятность того, что X = x i равна p i ), то среднее значение функции определяется как

Предположим, что X – случайная величина с непрерывным распределением и характеризуется плотностью вероятности j(x ). Тогда вероятность того, что X заключена между x и x + Dх :

Величина X при этом приближенно принимает значение x . В пределе при Dx ® 0, можно предположить, что приращение Dx численно равно дифференциалу dx .

Произведя замену Dx = dх , получаем точную формулу для расчета среднего значения Х :

Аналогично для g(Х ):

Как правило, недостаточно бывает знать только среднее значение (математическое ожидание) случайной величины. Для оценки меры случайности величины (для оценки разброса конкретных значений X относительно математического ожидания M [X ]) вводится понятие дисперсии случайной величины. Дисперсия – среднее значение квадрата отклонения каждого конкретного значения X от математического ожидания. Чем больше дисперсия , тем больше случайности разброса величины от математического ожидания. Если случайная величина дискретная, то

Для непрерывной случайной величины дисперсию можно записать аналогично:

Дисперсия хорошо описывает разброс величины, но при этом есть один недостаток: размерность не соответствует размерности X . Чтобы избавиться от этого недостатка, часто в конкретных приложениях рассматривают не , а положительное значение , которое называется средним квадратическим отклонением .

1.3.2.1. Свойства математического ожидания

1. Математическое ожидание неслучайной величины равно самой этой величине M [C ] = C .

2. Неслучайный множитель С можно выносить за знак математического ожидания M [CX ] = CM [X ].

3. Математическое ожидание суммы случайных величин равно сумме математических ожиданий этих случайных величин.

4. Математическое ожидание произведения независимых случайных величин равно произведению математических ожиданий этих величин (условие независимости случайных величин).

1.3.2.2. Свойства дисперсии

1. Дисперсия неслучайной величины С равна нулю: D [C ]=0.

2. Дисперсия произведения неслучайного множителя С на случайную величину равна произведению С 2 на дисперсию случайной величины.

3. Дисперсия суммы независимых случайных величин X 1 и X 2 равна сумме дисперсий слагаемых

1.3.3. Моменты случайной величины

Пусть Х – непрерывная случайная величина. Если n – целое положительное число, а функция x n интегрируема на интервале (–¥; +¥), то среднее значение

n = 0, 1,…, n

называется начальным моментом порядка n случайной величины X .

Очевидно, что момент нулевого порядка

,

Пусть для случайной величины x возможные значения:

X1, x2, …, xk.

Измерения проводятся N раз, результат x i наблюдается N i раз, тогда

Среднее значение

(сумма результатов измерений)/(число всех измерений) =
.

При
с учетом (1.1)

получаем

. (1.5)

Для функции случайной величины

. (1.5а)

Среднее значение величины равно сумме произведений ее значений на вероятности этих значений .

При
получаем
и (1.5а) дает нормировку вероятностей

. (1.6)

Свойства среднего

Для постоянной
и независимых случайных величинx и y выполняется:

1)

– постоянный множитель выносится из под знака усреднения;

– среднее от суммы/разности равно сумме/разности средних;

3)

– среднее от произведения независимых величин равно произведению их средних.

Доказательство свойства 1

Из определения среднего (1.5а)

получаем

Доказательство свойства 2

Функция
, описывающая распределение вероятности дляслучайной величины x , одинакова для функций
и
, тогда из определения среднего (1.5а)

;

Доказательство свойства 3

Используем определение среднего и функцию распределения
независимых случайных величин x и y . Согласно теореме о независимых событиях их вероятности перемножаются

Тогда получаем

.

Основные определения

Отклонение от среднего случайной величины

.

Среднее отклонение от среднего случайной величины равно нулю

Среднее квадратичное величины

. (1.7)

Для средних значений случайных величин x и y выполняется неравенство Коши–Буняковского–Шварца

. (1.7а)

Из (1.7а) при
находим

. (1.7б)

Среднее квадратичное больше или равно квадрату среднего.

Дисперсия –­ среднее квадратичное отклонение от среднего

Из (1.7б) получаем
.

Флуктуация – корень квадратный из дисперсии

Относительная флуктуация

. (1.10)

Если x случайным образом изменяется с течением времени, то относительная флуктуация показывает долю времени, в течение которой система находится в состоянии с
.

Теорема: Относительная флуктуация аддитивной величины, характеризующей систему, уменьшается обратно пропорционально корню квадратному из числа независимых подсистем и для макроскопической системы она мала . Примером аддитивной величины (от лат. additivus – «прибавляемый») является энергия. Флуктуация энергии для макросистемы ничтожно мала, для микросистемы она существенна.

Доказательство

Аддитивная величина X для системы равна сумме значений x k для N независимых подсистем

.

По свойству 2 усреднения – среднее от суммы равно сумме средних

– пропорциональна числу подсистем.

Отклонение от среднего

,

дисперсия

.

При возведении в квадрат
и усреднении результата для перекрестных произведений учтено свойство 3 усреднения –среднее от произведения независимых величин равно произведению их средних

,
,

и использовано, что среднее отклонение от среднего равно нулю

.

Не равными нулю остаются квадраты величин. В результате флуктуация

.

Относительная флуктуация

(П.1.11)

уменьшается обратно пропорционально корню квадратному из числа независимых подсистем.

Производящая функция . Имеется случайная величина n , которая принимает дискретные значения в интервале
. Вероятность получения результатаn равна
. Определяем производящую функцию

. (П.1.14)

Если известна производящая функция, то распределение вероятности получаем из (П.1.14)

, (П.1.15)

где использовано

Условие нормировки (1.6)

требует выполнения

. (П.1.16)

Для получения средних значений случайной величины дифференцируем (П.1.14)

,

и находим

. (П.1.17)

Двукратное дифференцирование (П.1.14)

. (П.1.18)

Теорема о произведении производящих функций . Если происходят два независимых вида событий, которые описываются распределениями вероятностей с производящими функциями
и
, то распределение для суммы событий выражается произведением их производящих функций

– количество мальчиков среди 10 новорождённых.

Совершенно понятно, что это количество заранее не известно, и в очередном десятке родившихся детей может оказаться:

Либо мальчиков – один и только один из перечисленных вариантов.

И, дабы соблюсти форму, немного физкультуры:

– дальность прыжка в длину (в некоторых единицах) .

Её не в состоянии предугадать даже мастер спорта:)

Тем не менее, ваши гипотезы?

2) Непрерывная случайная величина – принимает все числовые значения из некоторого конечного или бесконечного промежутка.

Примечание : в учебной литературе популярны аббревиатуры ДСВ и НСВ

Сначала разберём дискретную случайную величину, затем – непрерывную .

Закон распределения дискретной случайной величины

– этосоответствие между возможными значениями этой величины и их вероятностями. Чаще всего закон записывают таблицей:

Довольно часто встречается термин ряд распределения , но в некоторых ситуациях он звучит двусмысленно, и поэтому я буду придерживаться «закона».

А теперь очень важный момент : поскольку случайная величина обязательно примет одно из значений , то соответствующие события образуют полную группу и сумма вероятностей их наступления равна единице:

или, если записать свёрнуто:

Так, например, закон распределения вероятностей выпавших на кубике очков имеет следующий вид:

Без комментариев.

Возможно, у вас сложилось впечатление, что дискретная случайная величина может принимать только «хорошие» целые значения. Развеем иллюзию – они могут быть любыми:

Пример 1

Некоторая игра имеет следующий закон распределения выигрыша:

…наверное, вы давно мечтали о таких задачах:) Открою секрет – я тоже. В особенности после того, как завершил работу над теорией поля .

Решение : так как случайная величина может принять только одно из трёх значений, то соответствующие события образуют полную группу , а значит, сумма их вероятностей равна единице:

Разоблачаем «партизана»:

– таким образом, вероятность выигрыша условных единиц составляет 0,4.

Контроль: , в чём и требовалось убедиться.

Ответ :

Не редкость, когда закон распределения требуется составить самостоятельно. Для этого используют классическое определение вероятности , теоремы умножения / сложения вероятностей событий и другие фишки тервера :

Пример 2

В коробке находятся 50 лотерейных билетов, среди которых 12 выигрышных, причём 2 из них выигрывают по 1000 рублей, а остальные – по 100 рублей. Составить закон распределения случайной величины – размера выигрыша, если из коробки наугад извлекается один билет.

Решение : как вы заметили, значения случайной величины принято располагать в порядке их возрастания . Поэтому мы начинаем с самого маленького выигрыша, и именно рублей.

Всего таковых билетов 50 – 12 = 38, и по классическому определению :
– вероятность того, что наудачу извлечённый билет окажется безвыигрышным.

С остальными случаями всё просто. Вероятность выигрыша рублей составляет:

Проверка: – и это особенно приятный момент таких заданий!

Ответ : искомый закон распределения выигрыша:

Следующее задание для самостоятельного решения:

Пример 3

Вероятность того, что стрелок поразит мишень, равна . Составить закон распределения случайной величины – количества попаданий после 2 выстрелов.

…я знал, что вы по нему соскучились:) Вспоминаем теоремы умножения и сложения . Решение и ответ в конце урока.

Закон распределения полностью описывает случайную величину, однако на практике бывает полезно (а иногда и полезнее) знать лишь некоторые её числовые характеристики .

Математическое ожидание дискретной случайной величины

Говоря простым языком, это среднеожидаемое значение при многократном повторении испытаний. Пусть случайная величина принимает значения с вероятностями соответственно. Тогда математическое ожидание данной случайной величины равно сумме произведений всех её значений на соответствующие вероятности:

или в свёрнутом виде:

Вычислим, например, математическое ожидание случайной величины – количества выпавших на игральном кубике очков:

Теперь вспомним нашу гипотетическую игру:

Возникает вопрос: а выгодно ли вообще играть в эту игру? …у кого какие впечатления? Так ведь «навскидку» и не скажешь! Но на этот вопрос можно легко ответить, вычислив математическое ожидание, по сути – средневзвешенный по вероятностям выигрыш:

Таким образом, математическое ожидание данной игры проигрышно .

Не верь впечатлениям – верь цифрам!

Да, здесь можно выиграть 10 и даже 20-30 раз подряд, но на длинной дистанции нас ждёт неминуемое разорение. И я бы не советовал вам играть в такие игры:) Ну, может, только ради развлечения .

Из всего вышесказанного следует, что математическое ожидание – это уже НЕ СЛУЧАЙНАЯ величина.

Творческое задание для самостоятельного исследования:

Пример 4

Мистер Х играет в европейскую рулетку по следующей системе: постоянно ставит 100 рублей на «красное». Составить закон распределения случайной величины – его выигрыша. Вычислить математическое ожидание выигрыша и округлить его до копеек. Сколько в среднем проигрывает игрок с каждой поставленной сотни?

Справка : европейская рулетка содержит 18 красных, 18 чёрных и 1 зелёный сектор («зеро»). В случае выпадения «красного» игроку выплачивается удвоенная ставка, в противном случае она уходит в доход казино

Существует много других систем игры в рулетку, для которых можно составить свои таблицы вероятностей. Но это тот случай, когда нам не нужны никакие законы распределения и таблицы, ибо доподлинно установлено, что математическое ожидание игрока будет точно таким же. От системы к системе меняется лишь

Теория вероятности - особый раздел математики, который изучают только студенты высших учебных заведений. Вы любите расчёты и формулы? Вас не пугают перспективы знакомства с нормальным распределением, энтропией ансамбля, математическим ожиданием и дисперсией дискретной случайной величины? Тогда этот предмет вам будет очень интересен. Давайте познакомимся с несколькими важнейшими базовыми понятиями этого раздела науки.

Вспомним основы

Даже если вы помните самые простые понятия теории вероятности, не пренебрегайте первыми абзацами статьи. Дело в том, что без четкого понимания основ вы не сможете работать с формулами, рассматриваемыми далее.

Итак, происходит некоторое случайное событие, некий эксперимент. В результате производимых действий мы можем получить несколько исходов - одни из них встречаются чаще, другие - реже. Вероятность события - это отношение количества реально полученных исходов одного типа к общему числу возможных. Только зная классическое определение данного понятия, вы сможете приступить к изучению математического ожидания и дисперсии непрерывных случайных величин.

Среднее арифметическое

Ещё в школе на уроках математики вы начинали работать со средним арифметическим. Это понятие широко используется в теории вероятности, и потому его нельзя обойти стороной. Главным для нас на данный момент является то, что мы столкнемся с ним в формулах математического ожидания и дисперсии случайной величины.

Мы имеем последовательность чисел и хотим найти среднее арифметическое. Всё, что от нас требуется - просуммировать всё имеющееся и разделить на количество элементов в последовательности. Пусть мы имеем числа от 1 до 9. Сумма элементов будет равна 45, и это значение мы разделим на 9. Ответ: - 5.

Дисперсия

Говоря научным языком, дисперсия - это средний квадрат отклонений полученных значений признака от среднего арифметического. Обозначается одна заглавной латинской буквой D. Что нужно, чтобы её рассчитать? Для каждого элемента последовательности посчитаем разность между имеющимся числом и средним арифметическим и возведем в квадрат. Значений получится ровно столько, сколько может быть исходов у рассматриваемого нами события. Далее мы суммируем всё полученное и делим на количество элементов в последовательности. Если у нас возможны пять исходов, то делим на пять.

У дисперсии есть и свойства, которые нужно запомнить, чтобы применять при решении задач. Например, при увеличении случайной величины в X раз, дисперсия увеличивается в X в квадрате раз (т. е. X*X). Она никогда не бывает меньше нуля и не зависит от сдвига значений на равное значение в большую или меньшую сторону. Кроме того, для независимых испытаний дисперсия суммы равна сумме дисперсий.

Теперь нам обязательно нужно рассмотреть примеры дисперсии дискретной случайной величины и математического ожидания.

Предположим, что мы провели 21 эксперимент и получили 7 различных исходов. Каждый из них мы наблюдали, соответственно, 1,2,2,3,4,4 и 5 раз. Чему будет равна дисперсия?

Сначала посчитаем среднее арифметическое: сумма элементов, разумеется, равна 21. Делим её на 7, получая 3. Теперь из каждого числа исходной последовательности вычтем 3, каждое значение возведем в квадрат, а результаты сложим вместе. Получится 12. Теперь нам остается разделить число на количество элементов, и, казалось бы, всё. Но есть загвоздка! Давайте её обсудим.

Зависимость от количества экспериментов

Оказывается, при расчёте дисперсии в знаменателе может стоять одно из двух чисел: либо N, либо N-1. Здесь N - это число проведенных экспериментов или число элементов в последовательности (что, по сути, одно и то же). От чего это зависит?

Если количество испытаний измеряется сотнями, то мы должны ставить в знаменатель N. Если единицами, то N-1. Границу ученые решили провести достаточно символически: на сегодняшний день она проходит по цифре 30. Если экспериментов мы провели менее 30, то делить сумму будем на N-1, а если более - то на N.

Задача

Давайте вернемся к нашему примеру решения задачи на дисперсию и математическое ожидание. Мы получили промежуточное число 12, которое нужно было разделить на N или N-1. Поскольку экспериментов мы провели 21, что меньше 30, выберем второй вариант. Итак, ответ: дисперсия равна 12 / 2 = 2.

Математическое ожидание

Перейдем ко второму понятию, которое мы обязательно должны рассмотреть данной статье. Математическое ожидание - это результат сложения всех возможных исходов, помноженных на соответствующие вероятности. Важно понимать, что полученное значение, как и результат расчёта дисперсии, получается всего один раз для целой задачи, сколько бы исходов в ней не рассматривалось.

Формула математического ожидания достаточно проста: берем исход, умножаем на его вероятность, прибавляем то же самое для второго, третьего результата и т. д. Всё, связанное с этим понятием, рассчитывается несложно. Например, сумма матожиданий равна матожиданию суммы. Для произведения актуально то же самое. Такие простые операции позволяет с собой выполнять далеко не каждая величина в теории вероятности. Давайте возьмем задачу и посчитаем значение сразу двух изученных нами понятий. Кроме того, мы отвлекались на теорию - пришло время попрактиковаться.

Ещё один пример

Мы провели 50 испытаний и получили 10 видов исходов - цифры от 0 до 9 - появляющихся в различном процентном отношении. Это, соответственно: 2%, 10%, 4%, 14%, 2%,18%, 6%, 16%, 10%, 18%. Напомним, что для получения вероятностей требуется разделить значения в процентах на 100. Таким образом, получим 0,02; 0,1 и т.д. Представим для дисперсии случайной величины и математического ожидания пример решения задачи.

Среднее арифметическое рассчитаем по формуле, которую помним с младшей школы: 50/10 = 5.

Теперь переведем вероятности в количество исходов «в штуках», чтобы было удобнее считать. Получим 1, 5, 2, 7, 1, 9, 3, 8, 5 и 9. Из каждого полученного значения вычтем среднее арифметическое, после чего каждый из полученных результатов возведем в квадрат. Посмотрите, как это сделать, на примере первого элемента: 1 - 5 = (-4). Далее: (-4) * (-4) = 16. Для остальных значений проделайте эти операции самостоятельно. Если вы всё сделали правильно, то после сложения всех вы получите 90.

Продолжим расчёт дисперсии и математического ожидания, разделив 90 на N. Почему мы выбираем N, а не N-1? Правильно, потому что количество проведенных экспериментов превышает 30. Итак: 90/10 = 9. Дисперсию мы получили. Если у вас вышло другое число, не отчаивайтесь. Скорее всего, вы допустили банальную ошибку при расчётах. Перепроверьте написанное, и наверняка всё встанет на свои места.

Наконец, вспомним формулу математического ожидания. Не будем приводить всех расчётов, напишем лишь ответ, с которым вы сможете свериться, закончив все требуемые процедуры. Матожидание будет равно 5,48. Напомним лишь, как осуществлять операции, на примере первых элементов: 0*0,02 + 1*0,1… и так далее. Как видите, мы просто умножаем значение исхода на его вероятность.

Отклонение

Ещё одно понятие, тесно связанное с дисперсией и математическим ожиданием - среднее квадратичное отклонение. Обозначается оно либо латинскими буквами sd, либо греческой строчной «сигмой». Данное понятие показывает, насколько в среднем отклоняются значения от центрального признака. Чтобы найти её значение, требуется рассчитать квадратный корень из дисперсии.

Если вы построите график нормального распределения и захотите увидеть непосредственно на нём квадратичного отклонения, это можно сделать в несколько этапов. Возьмите половину изображения слева или справа от моды (центрального значения), проведите перпендикуляр к горизонтальной оси так, чтобы площади получившихся фигур были равны. Величина отрезка между серединой распределения и получившейся проекцией на горизонтальную ось и будет представлять собой среднее квадратичное отклонение.

Программное обеспечение

Как видно из описаний формул и представленных примеров, расчеты дисперсии и математического ожидания - не самая простая процедура с арифметической точки зрения. Чтобы не тратить время, имеет смысл воспользоваться программой, используемой в высших учебных заведениях - она называется «R». В ней есть функции, позволяющие рассчитывать значения для многих понятий из статистики и теории вероятности.

Например, вы задаете вектор значений. Делается это следующим образом: vector <-c(1,5,2…). Теперь, когда вам потребуется посчитать какие-либо значения для этого вектора, вы пишете функцию и задаете его в качестве аргумента. Для нахождения дисперсии вам нужно будет использовать функцию var. Пример её использования: var(vector). Далее вы просто нажимаете «ввод» и получаете результат.

В заключение

Дисперсия и математическое ожидание - это без которых сложно в дальнейшем что-либо рассчитать. В основном курсе лекций в вузах они рассматриваются уже в первые месяцы изучения предмета. Именно из-за непонимания этих простейших понятий и неумения их рассчитать многие студенты сразу начинают отставать по программе и позже получают плохие отметки по результатам сессии, что лишает их стипендии.

Потренируйтесь хотя бы одну неделю по полчаса в день, решая задания, схожие с представленными в данной статье. Тогда на любой контрольной по теории вероятности вы справитесь с примерами без посторонних подсказок и шпаргалок.

Наберитесь терпения и прочитайте это..

Игра с положительным математическим ожиданием - жизненно важная концепция для всех спекулянтов, это концепция, на которой строится система веры, но сама концепция не может быть построена на вере. Казино не работают на вере. Казино оперирует, управляя своим бизнесом, основываясь на чистой математике. Казино знает, что, в конечном счете, законы рулетки и игры в кости возьмут верх. Поэтому казино не дает игре останавливаться. Казино не против того чтобы подождать, но казино не останавливается и играет круглые сутки, ведь чем дольше вы играете в его игру отрицательного математического ожидания, тем больше организаторы казино уверены, что получат ваши деньги.

Трейдеру необходимо иметь понятие о математическом ожидании. В зависимости от того, у кого математическое преимущество в игре, оно называется либо преимуществом игрока - положительное ожидание, либо преимуществом игорного дома - отрицательное ожидание. Допустим, мы играем с вами в орла-или-решку. Ни у вас, ни у меня нет преимущества у каждого 50% шансов на выигрыш. Но если мы перенесем эту игру в казино, которое снимает 10% с каждого кона, то вы выиграете только 90 центов на каждый проигранный доллар. Это преимущество игорного дома оборачивается для вас как игрока сильным отрицательным математическим ожиданием. И ни одна система контроля, над капиталом, ни одна стратегия не может одолеть игру с отрицательным ожиданием.

В играх с отрицательным математическим ожиданием не имеется никакой схемы управления деньгами (стратегии) которая сделает вас победителем.

Интересная штука рулетка, передовик всех азартных игр, в основу возьмем ее. Итак, казино, крики, шум, эмоции и роскошная показуха, но мы сосредоточимся на рулетке. Давайте рассчитаем математическое ожидание игры в рулетку, если играть только на красное-черное (в трейдинге кстати это лонг или шорт). Итак на рулетке всего 38 игровых полей - 36 цифр (18 красных и 18 черных полей), а также два зеро (возьмем релетку с двумя зеро). Таким образом, вероятность выигрыша при ставке на красное или черное составляет приблизительно 0.45 (18/38). В случае положительного исхода ставки мы удваиваем свою ставку, а в случае неудачи теряем все поставленное. Ах да, в случае выпадения зеро мы так же теряем свои деньги. Отсюда имеем отрицательное математическое ожидание. Данную игру можно назвать невыгодной по причине наличия среди игровых полей двух зеро, при выпадении которых нашу ставку забирает в свою пользу казино. Одна ячейка - это примерно 2,6% колеса рулетки, две ячейки это более 5%, именно такой процент хозяева казино кладут себе в карман в среднем с каждой сделки, так казино медленно выкачивает деньги из клиентов, зарабатывая уже много десятилетий.

Безусловно для казино эта игра с положительным математическим ожиданием, при двух зеро казино получит деньги игрока в двадцати случаях из 38. И чем больше игра будет продолжаться, тем больше казино получит прибыли.

А каково математическое ожидание финансовых игр? Ставки на финансовые инструменты обладают всеми внешними атрибутами азартных игр, финансовые игры на бирже распыляют зеро рулетки на большое количество компонентов вероятности - спрэд, комиссионные бирже, комиссионные брокеру, абоненская плата за пользованием биржевого терминала, плата за перевод средств на счета и по сути 13% налог на будущую прибыль в совокупности являются своеобразными аналогами зеро рулетки . Это дает основание говорить об отрицательном, изначально неблагоприятном математическом ожидании для игрока (трейдера).

Я хочу что бы вы поняли - Никакой метод управления капиталом, никакая стратегия, не может превратить отрицательное ожидание в положительное. Это абсолютно верное замечание. Математических доказательств этому утверждению нет. Однако это не означает, что такое не может произойти. Конечно в азартных играх участник может выйти на полосу выигрышей, совпадений и просто прекратить игру, в результате такой человек по сути окажется победителем. Но на долго ли он завяжет с игрой?...

Поэтому единственный случай, когда у вас есть шанс выиграть в долгосрочной перспективе, - это игра с положительным математическим ожиданием . Думаю, вы можете выиграть как правило при многократном использовании ставки одинакового размера и только при отсутствии верхнего поглощающего барьера . Азартный игрок, который начинает со 100 долларов, прекратит играть, если его счет вырастит до 101 доллара. Эта верхняя цель (101 доллар) называется поглощающим барьером. Допустим, игрок всегда ставит 1 доллар на красный цвет рулетки где 18 полос красные, 18 полос черные, 2 полосы ноль, при нуле деньги уходят в казино. Таким образом, игра идет при небольшом отрицательном математическом ожидании. У игрока больше шансов увидеть, как его счет вырастет до 101 доллара и игрок прекратит играть, чем то, что его счет уменьшится до нуля, и игроку будет не на что играть. Если игрок будет играть на рулетке снова и снова, то окажется жертвой отрицательного математического ожидания. Если сыграть в такую игру только раз, то аксиома неизбежного банкротства, конечно же, не применима, если сыграть один раз то скажем так сила отрицательного мат. ожидания будет максимально слаба. Различие между отрицательным ожиданием и положительным ожиданием - это различие между жизнью и смертью вашего депозита.

Когда вы понимаете, что игра имеет отрицательное математическое ожидание, то лучшей ставкой будет отсутствие ставки. Помните, что нет стратегии управления деньгами, которая может превратить проигрышную игру в выигрышную . Допустим вы все же должны сделать ставку в игре с отрицательным ожиданием, то наилучшей стратегией будет «стратегия максимальной смелости» . Другими словами, вам надо сделать как можно меньше ставок (в противоположность игре с положительным ожиданием, где следует ставить как можно чаще, желательно вообще не выходить из игры). Итак чем больше попыток, тем больше вероятность, что при отрицательном ожидании вы проиграете. Поэтому при отрицательном ожидании меньше возможности для проигрыша, если длина игры укорачивается (то есть когда число попыток приближается к 1). Если вы играете в игру, где есть шанс 49% выиграть 1 доллар и 51% проиграть 1 доллар, то лучше всего сделать только одну попытку. Чем больше ставок вы будете делать, тем больше сила вероятности, что вы проиграете (с вероятностью проигрыша, приближающейся к 100% уверенности, когда игра приближается к бесконечности при отрицательном мат. ожидании).

Организаторы игры, казино - не расскажут трейдеру о математическом ожидании, «они» расскажут трейдеру о возможности выиграть и найдут различные причины для трейдера сделать ставку. Слушая организаторов игры и огромного количества околорыночников которые получают комиссию не рискуя своими деньгами трейдер полагает, что для успешной игры важно проанализировать график, новости, нарисовать черточки по лженауке тех анализа и тем самым найти подходящий момент для открытия позиций и этим якобы повысить надежность своей системы-стратегии (если она есть) и победить рынок. Но правда кроется в том, что не менее 97% людей, пытающихся изобрести системы-стратегии трейдинга, просто пытаются найти идеальный входной сигнал . Этот входной сигнал бессилен против изначального математически отрицательного ожидания. Фактически трейдеры почти всегда говорят о своих системах, имеющих коэффициент надежности не менее 60%. Но при этом их удивляет, почему они не зарабатывают денег, в долгосрочной перспективе трейдеры теряют деньги! Поймите, даже система с высоким процентом выигрышей при отрицательном математическом ожидании это путь в никуда, лучшее что может сделать трейдер это остановиться на полосе побед и больше не входить в рынок.

Еще такая интересная подробность, допустим вы начинаете игру с одного доллара, выигрываете при первом броске и зарабатываете доллар. При следующем броске вы ставите весь счет (2 доллара), однако на этот раз проигрываете и теряете их. Вы проиграли первоначальную сумму в 1 доллар и 1 доллара прибыли, Дело в том, что если вы используете 100% счета, то выйдете из игры, как только столкнетесь с проигрышем который является неизбежным событием. Из этого вытекает важное правило, если вы все таки начали игру, то играйте одинаковыми ставками, а прибыль забирайте себе. Не входите в рынок большими ставками при отрицательном математическом о

Постоянно краткосрочные трейдеры рассказывают типа Я успешный дэй-трейдер. Вхожу в рынок и выхожу из него по нескольку раз в день. И почти каждый день зарабатываю деньги. Но за один вчерашний день я потерял почти годовую прибыль и очень этим расстроен. Такие ошибки возникают в результате изменения ставки, попадании в ловушку с использованием плечей и эмоциональном трейдинге. Подбор входа, заработок в течении некоторого времени и слив счета в итоге, это судьба подавляющего большинства трейдеров играющих но поле отрицательного мат. ожидания.

Как трейдеры борятся с рынком? Попытки преломить отрицательное математическое ожидание – это одинаковые серии ставок по одинаковым «событиям». Это - классический пример азартной игры, где участники пытаются воспользоваться сериями. Единственный случай, который приводит их к проигрышу при таком подходе, - это когда в серии наблюдается много одинаковых выпадений подряд. Серии, чем более мелкие тем лучше - более эффективны чем слепая игра, тем не менее серии не обеспечивают положительное математическое ожидание.

Все вы наверно слышали про Мартингейл, это усовершенствованная стратегия серий. Тут игрок начинает с минимальной ставки, обычно с 1 доллара, и после каждого проигрыша удваивает ставку. Теоретически он рано или поздно должен выиграть и тогда получит обратно все проигранное плюс один доллар. После этого он опять может сделать минимальную ставку и начать сначала. Базовая концепция метода Мартингейл строится на том, что по мере уменьшения суммы в результате убытков возможность компенсации потерь либо увеличивается, либо остается прежней. Это популярный тип управления капиталом для игроков в азартные игры. Система удвоения выглядит беспроигрышной до того момента, когда вы сообразите, что длинная полоса неудач разорит любого игрока, сколь бы богат он ни был. Игрок, начавший с 1 доллара и проигравший 46 раз, должен поставить 47-ю ставку в 70 триллионов долларов , а это больше, чем стоимость всего мира (примерно 50 триллионов). Ясно, что намного раньше у него кончатся деньги или он упрется в ограничения его депозита или казино. Считаю что система удвоения бесполезна, если у вас отрицательное математическое ожидание и слишком рискованна для того что бы использовать эту систему на свои деньги.

В бесконечном продолжении игра с отрицательным математическим ожиданием является бесперспективной. Но при ограниченном числе серий вероятность выйти победителем есть. Либо нужно искать мат. положительную игру где возможная прибыль будет больше, чем возможный убыток на 1 ставку.

Большинство трейдеров гибнут от одной из двух пуль это незнание и эмоции. Профаны играют по наитию, ввязываясь в сделки, которые им - вследствие отрицательного математического ожидания - следовало бы пропустить. Если они выживают, то, подучившись, начинают разрабатывать системы поумнее. Затем, уверившись в себе, они высовывают голову из окопа - и попадают под вторую пулю. От самонадеянности они ставят слишком много на одну сделку и вылетают из игры после короткой вереницы потерь. Эмоциональность оказывает самое непосредственное влияние на финансовый результат, получаемый инвестором - в большей степени игроком от финансовых спекуляций. И чем эмоциональней поведение человека, тем значительней будет отклонение математического ожидания финансовых результатов его торговли от реальности. Для азартных игр, обладающих отрицательным математическим ожиданием финансовые результаты, полученные под влиянием эмоций, это похороны депозита.

Как правило, любые игры с денежным выигрышем, будь это лотерея, ставки на ипподроме и в букмекерских конторах, игральные автоматы и т.п., являются играми с отрицательным математическим ожиданием для игрока. Казино не просто так организуют для вас эти игры. Особенность среднестатистического трейдера состоит в том, что он не способен просчитать все мелочи которые ожидают его в будущем, потому и будущее его игры предрешено.

Хочу что бы вы поняли - участие в любой из игр с отрицательным математическим ожиданием нельзя расценивать как источник стабильного дохода.

Что делать? Каждый решает для себя сам, я нашел математически положительное ожидание на биржевых опционах, но даже там постоянные изменения правил игры брокерами и биржами приводят к сильному уменьшению итогового дохода. Размазанный ноль рулетки на спредах, поборах, брокеров и других мелочах жестоко уменьшает итоговую прибыль, но именно с использованием опционов и только можно выстроить мат+ систему в этом «казино 21 века».

Ищите математически положительное ожидание любыми способами!

Думаю так, ключ к зарабатыванию денег на финансовом рынке состоит в том, чтобы иметь систему с высоким положительным математическим ожиданием, используя эту систему крайне важно использовать изначально установленый размер позиции, работать строго по правилам и многократно и как можно дольше раз продолжать игру и зарабатывать борясь с выходками организаторов этого «казино».



В продолжение темы:
Аксессуары

(49 слов) В повести Тургенева «Ася» человечность проявил Гагин, когда взял на попечение незаконнорожденную сестру. Он же вызвал друга на откровенную беседу по поводу чувства...

Новые статьи
/
Популярные