Нахождение экстремума. Экстремумы функции: признаки существования, примеры решений

Функции, вовсе необязательно знать о наличии первой и второй производной и понимать их физический смысл. Для начала нужно уяснить следующее:

  • экстремумы функции максимизируют или, наоборот, минимизируют значение функции в сколь угодно малой окрестности;
  • в точке экстремума не должно быть разрыва функции.

А теперь то же самое, только простым языком. Посмотрите на кончик стержня шариковой ручки. Если ручку расположить вертикально, пишущим концом вверх, то самая середина шарика будет экстремумом — наивысшей точкой. В этом случае говорят о максимуме. Теперь, если повернуть ручку пишущим концом вниз, то на середке шарика уже будет минимум функции. С помощью рисунка, приведенного здесь же, можно представить перечисленные манипуляции для канцелярского карандаша. Итак, экстремумы функции — это всегда критические точки: ее максимумы или минимумы. Прилегающий участок графика может быть сколь угодно острым или плавным, но он должен существовать с обеих сторон, только в этом случае точка является экстремумом. Если график присутствует лишь с одной стороны, точка эта экстремумом являться не будет даже в том случае, если с одной ее стороны условия экстремума выполняются. Теперь изучим экстремумы функции с научной точки зрения. Дабы точка могла считаться экстремумом, необходимо и достаточно, чтобы:

  • первая производная равнялась нулю или не существовала в точке;
  • первая производная меняла свой знак в этой точке.

Условие трактуется несколько иначе с точки зрения производных более высокого порядка: для функции, дифференцируемой в точке, достаточно, чтобы существовала производная нечетного порядка, неравная нулю, при том, что все производные более низшего порядка должны существовать и быть равными нулю. Это максимально простое толкование теорем из учебников Но для самых обычных людей стоит пояснить этот момент примером. За основу берется обыкновенная парабола. Сразу оговоримся, в нулевой точке у нее имеется минимум. Совсем немного математики:

  • первая производная (X 2) | = 2X, для нулевой точки 2Х = 0;
  • вторая производная (2Х) | = 2, для нулевой точки 2 = 2.

Таким нехитрым образом проиллюстрированы условия, определяющие экстремумы функции и для производных первого порядка, и для производных высшего порядка. Можно к этому добавить, что вторая производная как раз является той самой производной нечетного порядка, неравной нулю, о которой говорилось чуть выше. Когда речь заходит про экстремумы функции двух переменных, то условия должны выполняться для обоих аргументов. Когда происходит обобщение, то в ход идут частные производные. То есть необходимо для наличия экстремума в точке, чтобы обе производные первого порядка равнялись нулю, либо хотя бы одна из них не существовала. Для достаточности наличия экстремума исследуется выражение, представляющее собой разность произведения производных второго порядка и квадрата смешанной производной второго порядка функции. Если это выражение больше нуля, значит, экстремум имеет место быть, а если присутствует равенство нулю, то вопрос остается открытым, и нужно проводить дополнительные исследования.

С помощью данного сервиса можно найти наибольшее и наименьшее значение функции одной переменной f(x) с оформлением решения в Word . Если же задана функция f(x,y) , следовательно, необходимо найти экстремум функции двух переменных . Также можно найти интервалы возрастания и убывания функции .

Найти наибольшее и наименьшее значение функции

y =

на отрезке [ ;]

Включать теорию

Правила ввода функций :

Необходимое условие экстремума функции одной переменной

Уравнение f" 0 (x *) = 0 - это необходимое условие экстремума функции одной переменной, т.е. в точке x * первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки x с, в которых функция не возрастает и не убывает.

Достаточное условие экстремума функции одной переменной

Пусть f 0 (x) дважды дифференцируемая по x , принадлежащему множеству D . Если в точке x * выполняется условие:

F" 0 (x *) = 0
f"" 0 (x *) > 0

То точка x * является точкой локального (глобального) минимума функции.

Если в точке x * выполняется условие:

F" 0 (x *) = 0
f"" 0 (x *) < 0

То точка x * - локальный (глобальный) максимум.

Пример №1 . Найти наибольшее и наименьшее значения функции: на отрезке .
Решение.

Критическая точка одна x 1 = 2 (f’(x)=0). Эта точка принадлежит отрезку . (Точка x=0 не является критической, так как 0∉).
Вычисляем значения функции на концах отрезка и в критической точке.
f(1)=9, f(2)= 5 / 2 , f(3)=3 8 / 81
Ответ: f min = 5 / 2 при x=2; f max =9 при x=1

Пример №2 . С помощью производных высших порядков найти экстремум функции y=x-2sin(x) .
Решение.
Находим производную функции: y’=1-2cos(x) . Найдем критические точки: 1-cos(x)=2, cos(x)=½, x=± π / 3 +2πk, k∈Z. Находим y’’=2sin(x), вычисляем , значит x= π / 3 +2πk, k∈Z – точки минимума функции; , значит x=- π / 3 +2πk, k∈Z – точки максимума функции.

Пример №3 . Исследовать на экстремум фцнкцию в окрестностях точки x=0.
Решение. Здесь необходимо найти экстремумы функции. Если экстремум x=0 , то выяснить его тип (минимум или максимум). Если среди найденных точек нет x = 0, то вычислить значение функции f(x=0).
Следует обратить внимание, что когда производная с каждой стороны от данной точки не меняет своего знака, не исчерпываются возможные ситуации даже для дифференцируемых функций: может случиться, что для сколь угодно малой окрестности по одну из сторон от точки x 0 или по обе стороны производная меняет знак. В этих точках приходится применять другие методы для исследования функций на экстремум.

Введение

Во многих областях науки и в практической деятельности часто приходится сталкиваться с задачами поиска экстремума функции. Дело в том, что многие технические, экономические и т.д. процессы моделируются функцией или несколькими функциями, зависящими от переменных – факторов, влияющих на состояние моделируемого явления. Требуется найти экстремумы таких функций для того, чтобы определить оптимальное (рациональное) состояние, управление процессом. Так в экономике, часто решаются задачи минимизации издержек или максимизации прибыли – микроэкономическая задача фирмы. В этой работе мы не рассматриваем вопросы моделирования, а рассматриваем только алгоритмы поиска экстремумов функций в простейшем варианте, когда на переменные не накладываются ограничения (безусловная оптимизация), и экстремум ищется только для одной целевой функции.


ЭКСТРЕМУМЫ ФУНКЦИИ

Рассмотрим график непрерывной функции y=f(x) , изображенной на рисунке. Значение функции в точке x 1 будет больше значений функции во всех соседних точках как слева, так и справа от x 1 . В этом случае говорят, что функция имеет в точке x 1 максимум. В точке x 3 функция, очевидно, также имеет максимум. Если рассмотреть точку x 2 , то в ней значение функции меньше всех соседних значений. В этом случае говорят, что функция имеет в точке x 2 минимум. Аналогично для точки x 4 .

Функция y=f(x) в точке x 0 имеет максимум , если значение функции в этой точке больше, чем ее значения во всех точках некоторого интервала, содержащего точку x 0 , т.е. если существует такая окрестность точки x 0 , что для всех x x 0 , принадлежащих этой окрестности, имеет место неравенство f(x) <f(x 0 ) .

Функция y=f(x) имеет минимум в точке x 0 , если существует такая окрестность точки x 0 , что для всех x x 0 , принадлежащих этой окрестности, имеет место неравенство f(x) >f(x 0 .

Точки, в которых функция достигает максимума и минимума, называются точками экстремума, а значения функции в этих точках экстремумами функции.

Обратим внимание на то, что функция, определенная на отрезке, может достигать максимума и минимума только в точках, заключенных внутри рассматриваемого отрезка.

Отмети, что если функция имеет в точке максимум, то это не означает, что в этой точке функция имеет наибольшее значение во всей области определения. На рисунке, рассмотренном выше, функция в точке x 1 имеет максимум, хотя есть точки, в которых значения функции больше, чем в точке x 1 . В частности, f (x 1) < f (x 4) т.е. минимум функции больше максимума. Из определения максимума следует только, что это самое большое значение функции в точках, достаточно близких к точке максимума.

Теорема 1. (Необходимое условие существования экстремума.) Если дифференцируемая функция y=f(x) имеет в точке x= x 0 экстремум, то ее производная в этой точке обращается в нуль.

Доказательство . Пусть для определенности в точке x 0 функция имеет максимум. Тогда при достаточно малых приращениях Δx имеем f(x 0 + Δx) 0 ) , т.е.

Но тогда

Переходя в этих неравенствах к пределу при Δx → 0 и учитывая, что производная f "(x 0) существует, а следовательно предел, стоящий слева, не зависит от того как Δx → 0, получаем: при Δx → 0 – 0 f" (x 0) ≥ 0 а при Δx → 0 + 0 f" (x 0) ≤ 0. Так как f " (x 0) определяет число, то эти два неравенства совместны только в том случае, когда f " (x 0) = 0.

Доказанная теорема утверждает, что точки максимума и минимума могут находиться только среди тех значений аргумента, при которых производная обращается в нуль.

Мы рассмотрели случай, когда функция во всех точках некоторого отрезка имеет производную. Как же обстоит дело в тех случаях, когда производная не существует? Рассмотрим примеры.

y =|x |.

Функция не имеет производной в точке x =0 (в этой точке график функции не имеет определенной касательной), но в этой точке функция имеет минимум, так как y (0)=0, а при всех x ≠ 0y > 0.

не имеет производной при x =0, так как обращается в бесконечность приx =0. Но в этой точке функция имеет максимум. не имеет производной при x =0, так как при x →0. В этой точке функция не имеет ни максимума, ни минимума. Действительно, f(x) =0 и при x <0f(x) <0, а при x >0f(x) >0.

Таким образом, из приведенных примеров и сформулированной теоремы видно, что функция может иметь экстремум лишь в двух случаях: 1) в точках, где производная существует и равна нулю; 2) в точке, где производная не существует.

Однако, если в некоторой точке x 0 мы знаем, что f "(x 0 ) =0, то отсюда нельзя делать вывод, что в точке x 0 функция имеет экстремум.

Например.

.

Но точка x =0 не является точкой экстремума, поскольку слева от этой точки значения функции расположены ниже оси Ox , а справа выше.

Значения аргумента из области определения функции, при которых производная функции обращается в нуль или не существует, называются критическими точками .

Из всего вышесказанного следует, что точки экстремума функции находятся среди критических точек, и, однако, не всякая критическая точка является точкой экстремума. Поэтому, чтобы найти экстремум функции, нужно найти все критические точки функции, а затем каждую из этих точек исследовать отдельно на максимум и минимум. Для этого служит следующая теорема.

Теорема 2. (Достаточное условие существования экстремума.) Пусть функция непрерывна на некотором интервале, содержащем критическую точку x 0 , и дифференцируема во всех точках этого интервала (кроме, быть может, самой точки x 0). Если при переходе слева направо через эту точку производная меняет знак с плюса на минус, то в точке x = x 0 функция имеет максимум. Если же при переходе через x 0 слева направо производная меняет знак с минуса на плюс, то функция имеет в этой точке минимум.

Таким образом, если

f "(x) >0 при x <x 0 и f "(x)< 0 при x> x 0 , то x 0 – точка максимума;

при x <x 0 и f "(x)> 0 при x> x 0 , то x 0 – точка минимума.

Доказательство . Предположим сначала, что при переходе через x 0 производная меняет знак с плюса на минус, т.е. при всех x , близких к точке x 0 f "(x)> 0 для x< x 0 , f "(x)< 0 для x> x 0 . Применим теорему Лагранжа к разности f(x) - f(x 0 ) = f "(c)(x- x 0), где c лежит между x и x 0 .

Пусть x < x 0 . Тогда c< x 0 и f "(c)> 0. Поэтомуf "(c)(x- x 0)< 0и, следовательно,

f(x) - f(x 0 )< 0,т.е. f(x)< f(x 0 ).

Пусть x > x 0 . Тогда c> x 0 и f "(c)< 0. Значитf "(c)(x- x 0)< 0. Поэтому f(x) - f(x 0 ) <0,т.е.f(x) < f(x 0 ) .

Таким образом, для всех значений x достаточно близких к x 0 f(x) < f(x 0 ) . А это значит, что в точке x 0 функция имеет максимум.

Аналогично доказывается вторая часть теоремы о минимуме.

Проиллюстрируем смысл этой теоремы на рисунке. Пусть f "(x 1 ) =0 и для любых x, достаточно близких к x 1 , выполняются неравенства

f "(x)< 0 при x< x 1 , f "(x)> 0 при x> x 1 .

Тогда слева от точки x 1 функция возрастает, а справа убывает, следовательно, при x = x 1 функция переходит от возрастания к убыванию, то есть имеет максимум.

Аналогично можно рассматривать точки x 2 и x 3 .


Схематически все вышесказанное можно изобразить на картинке:

Правило исследования функции y=f(x) на экстремум

Найти область определения функции f(x).

Найти первую производную функции f "(x) .

Определить критические точки, для этого:

найти действительные корни уравнения f "(x) =0;

найти все значения x при которых производная f "(x) не существует.

Определить знак производной слева и справа от критической точки. Так как знак производной остается постоянным между двумя критическими точками, то достаточно определить знак производной в какой-либо одной точке слева и в одной точке справа от критической точки.

Вычислить значение функции в точках экстремума.

Как видите, этот признак экстремума функции требует существования производной как минимум до второго порядка в точке .

Пример.

Найти экстремумы функции .

Решение.

Начнем с области определения:

Продифференцируем исходную функцию:

x=1 , то есть, это точка возможного экстремума. Находим вторую производную функции и вычисляем ее значение при x = 1 :

Следовательно, по второму достаточному условию экстремума, x=1 - точка максимума. Тогда - максимум функции.

Графическая иллюстрация.

Ответ:

Третье достаточное условие экстремума функции.

Пусть функция y=f(x) имеет производные до n -ого порядка в -окрестности точки и производные до n+1 -ого порядка в самой точке . Пусть и .

Пример.

Найти точки экстремума функции .

Решение.

Исходная функция является целой рациональной, ее областью определения является все множество действительных чисел.

Продифференцируем функцию:

Производная обращается в ноль при , следовательно, это точки возможного экстремума. Воспользуемся третьим достаточным условием экстремума.

Находим вторую производную и вычисляем ее значение в точках возможного экстремума (промежуточные вычисления опустим):

Следовательно, - точка максимума (для третьего достаточного признака экстремума имеем n=1 и ).

Для выяснения характера точек находим третью производную и вычисляем ее значение в этих точках:

Следовательно, - точка перегиба функции (n=2 и ).

Осталось разобраться с точкой . Находим четвертую производную и вычисляем ее значение в этой точке:

Следовательно, - точка минимума функции.

Графическая иллюстрация.

Ответ:

Точка максимума, - точка минимума функции.

10. Экстремумы функции Определение экстремума

Функция y = f(x) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство (f(x 1) < f (x 2) (f(x 1) > f(x 2)).

Если дифференцируемая функция y = f(x) на отрезке возрастает (убывает), то ее производная на этом отрезке f " (x)  0

(f " (x)  0).

Точка x о называется точкой локального максимума (минимума ) функции f(x), если существует окрестность точки x о , для всех точек которой верно неравенство f(x) ≤ f(x о) (f(x) ≥ f(x о)).

Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

Точки экстремума

Необходимые условия экстремума . Если точка x о является точкой экстремума функции f(x), то либо f " (x о) = 0, либо f (x о) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть x о - критическая точка. Если f " (x) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

Второе достаточное условие. Пусть функция f(x) имеет производную f " (x) в окрестности точки x о и вторую производную в самой точке x о . Если f " (x о) = 0, >0 (<0), то точка x о является точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные.

На отрезке функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Пример 3.22. Найти экстремумы функции f(x) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f " (x) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f(2) = 14 и минимум f(3) = 13.

Что такое экстремум функции и каково необходимое условие экстремума?

Экстремумом функции называется максимум и минимум функции.

Необходимое условие максимума и минимума (экстремума) функции следующее: если функция f(x) имеет экстремум в точке х = а, то в этой точке производная либо равна нулю, либо бесконечна, либо не существует.

Это условие необходимое, но не достаточное. Производная в точке х = а может обращаться в нуль, в бесконечность или не существовать без того, чтобы функция имела экстремум в этой точке.

Каково достаточное условие экстремума функции (максимума или минимума)?

Первое условие:

Если в достаточной близости от точки х = а производная f?(x) положительна слева от а и отрицательна справа от а, то в самой точке х = а функция f(x) имеет максимум

Если в достаточной близости от точки х = а производная f?(x) отрицательна слева от а и положительна справа от а, то в самой точке х = а функция f(x) имеет минимум при условии, что функция f(x) здесь непрерывна.

Вместо этого можно воспользоваться вторым достаточным условием экстремума функции:

Пусть в точке х = а первая производная f?(x) обращается в нуль; если при этом вторая производная f??(а) отрицательна, то функция f(x) имеет в точке x = a максимум, если положительна - то минимум.

Что такое критическая точка функции и как её найти?

Это значение аргумента функции, при котором функция имеет экстремум (т.е. максимум или минимум). Чтобы его найти, нужно найти производную функции f?(x) и, приравняв её к нулю, решить уравнение f?(x) = 0. Корни этого уравнения, а также те точки, в которых не существует производная данной функции, являются критическими точками, т. е. значениями аргумента, при которых может быть экстремум. Их можно легко определить, взглянув на график производной : нас интересуют те значения аргумента, при которых график функции пересекает ось абсцисс (ось Ох) и те, при которых график терпит разрывы.

Для примера найдём экстремум параболы .

Функция y(x) = 3x2 + 2x - 50.

Производная функции: y?(x) = 6x + 2

Решаем уравнение: y?(x) = 0

6х + 2 = 0, 6х = -2, х=-2/6 = -1/3

В данном случае критическая точка - это х0=-1/3. Именно при этом значении аргумента функция имеет экстремум . Чтобы его найти , подставляем в выражение для функции вместо «х» найдённое число:

y0 = 3*(-1/3)2 + 2*(-1/3) - 50 = 3*1/9 - 2/3 - 50 = 1/3 - 2/3 - 50 = -1/3 - 50 = -50,333.

Как определить максимум и минимум функции, т.е. её наибольшее и наименьшее значения?

Если знак производной при переходе через критическую точку х0 меняется с «плюса» на «минус», то х0 есть точка максимума ; если же знак производной меняется с минуса на плюс, то х0 есть точка минимума ; если знак не меняется, то в точке х0 ни максимума, ни минимума нет.

Для рассмотренного примера:

Берём произвольное значение аргумента слева от критической точки: х = -1

При х = -1 значение производной будет у?(-1) = 6*(-1) + 2 = -6 + 2 = -4 (т.е. знак - «минус»).

Теперь берём произвольное значение аргумента справа от критической точки: х = 1

При х = 1 значение производной будет у(1) = 6*1 + 2 = 6 + 2 = 8 (т.е. знак - «плюс»).

Как видим, производная при переходе через критическую точку поменяла знак с минуса на плюс. Значит, при критическом значении х0 мы имеем точку минимума.

Наибольшее и наименьшее значение функции на интервале (на отрезке) находят по такой же процедуре, только с учетом того, что, возможно, не все критические точки будут лежать внутри указанного интервала. Те критические точки, которые находятся за пределом интервала, нужно исключить из рассмотрения. Если внутри интервала находится только одна критическая точка - в ней будет либо максимум, либо минимум. В этом случае для определения наибольшего и наименьшего значений функции учитываем также значения функции на концах интервала.

Например, найдём наибольшее и наименьшее значения функции

y(x) = 3sin(x) — 0,5х

на интервалах:

Итак, производная функции —

y?(x) = 3cos(x) — 0,5

Решаем уравнение 3cos(x) — 0,5 = 0

cos(x) = 0,5/3 = 0,16667

х = ±arccos(0,16667) + 2πk.

Находим критические точки на интервале [-9; 9]:

х = arccos(0,16667) — 2π*2 = -11,163 (не входит в интервал)

х = -arccos(0,16667) — 2π*1 = -7,687

х = arccos(0,16667) — 2π*1 = -4,88

х = -arccos(0,16667) + 2π*0 = -1,403

х = arccos(0,16667) + 2π*0 = 1,403

х = -arccos(0,16667) + 2π*1 = 4,88

х = arccos(0,16667) + 2π*1 = 7,687

х = -arccos(0,16667) + 2π*2 = 11,163 (не входит в интервал)

Находим значения функции при критических значениях аргумента:

y(-7,687) = 3cos(-7,687) — 0,5 = 0,885

y(-4,88) = 3cos(-4,88) — 0,5 = 5,398

y(-1,403) = 3cos(-1,403) — 0,5 = -2,256

y(1,403) = 3cos(1,403) — 0,5 = 2,256

y(4,88) = 3cos(4,88) — 0,5 = -5,398

y(7,687) = 3cos(7,687) — 0,5 = -0,885

Видно, что на интервале [-9; 9] наибольшее значение функция имеет при x = -4,88:

x = -4,88, у = 5,398,

а наименьшее - при х = 4,88:

x = 4,88, у = -5,398.

На интервале [-6; -3] мы имеем только одну критическую точку: х = -4,88. Значение функции при х = -4,88 равно у = 5,398.

Находим значение функции на концах интервала:

y(-6) = 3cos(-6) — 0,5 = 3,838

y(-3) = 3cos(-3) — 0,5 = 1,077

На интервале [-6; -3] имеем наибольшее значение функции

у = 5,398 при x = -4,88

наименьшее значение —

у = 1,077 при x = -3

Как найти точки перегиба графика функции и определить стороны выпуклости и вогнутости?

Чтобы найти все точки перегиба линии y = f(x), надо найти вторую производную, приравнять её к нулю (решить уравнение) и испытать все те значения х, для которых вторая производная равна нулю, бесконечна или не существует. Если при переходе через одно из этих значений вторая производная меняет знак, то график функции имеет в этой точке перегиб. Если же не меняет, то перегиба нет.

Корни уравнения f ? (x) = 0, а также возможные точки разрыва функции и второй производной разбивают область определения функции на ряд интервалов. Выпуклость на каждом их интервалов определяется знаком второй производной. Если вторая производная в точке на исследуемом интервале положительна, то линия y = f(x) обращена здесь вогнутостью кверху, а если отрицательна - то книзу.

Как найти экстремумы функции двух переменных?

Чтобы найти экстремумы функции f(x,y), дифференцируемой в области её задания, нужно:

1) найти критические точки, а для этого — решить систему уравнений

fх? (x,y) = 0, fу? (x,y) = 0

2) для каждой критической точки Р0(a;b) исследовать, остается ли неизменным знак разности

для всех точек (х;у), достаточно близких к Р0. Если разность сохраняет положительный знак, то в точке Р0 имеем минимум, если отрицательный - то максимум. Если разность не сохраняет знака, то в точке Р0 экстремума нет.

Аналогично определяют экстремумы функции при большем числе аргументов.



В чем состоят особенности схемы построения деятельности бизнес-инкубатора
Бизнес-инкубаторы рассматриваются, прежде всего, как часть инфраструктуры поддержки малого предпринимательства, но одновременно они являются инструментом экономической, социальной, структурной и инновационной политики. Технологические инкубаторы - это один из инструментов политики для формирования адаптивной, динамичной, конкурентоспособной национальной инновационной


Дракула (англ. Dracula) — персонаж литературных произведений и кинофильмов, вампир.Был придуман ирландским писателем Брэмом Стокером для романа «Дракула» (1897). По распространённому мнению, прототипом для этого персонажа послужила реальная историческая личность — Влад III Цепеш (Драку

Где найти информацию о телефоне Sony Ericsson K790
Информацию о телефоне Sony Ericsson K790 можно найти на следующих сайтах:www.mobiset.ru - информация о телефоне Sony Ericsson K790 на mobiset.ru ;www.mobidrive.ru - информация о телефоне Sony Ericsson K790 на mobid

Кто входит в состав группы "Мельница"
www.melnitsa.net — официальный сайт группы Мельница «Мельница» — российская фолк-рок группа из Москвы. Основана 15 октября 1999 года.Группа «Мельница» играет акустическую и электроакустическую музыку. Инструменты: виолончель, флей

Что такое лютня
Лютня — струнный щипковый музыкальный инструмент. В своей классической форме она имеет изящный корпус в форме половинки груши, шейку с ладами, колковую коробку, отогнутую назад под углом к шейке, звуковое отверстие в виде розетки и 11 струн (пять пар и одинарная дискантовая струна). Слово «лютня» употребляется также в самом общем смысле

Что такое томат (помидор)
Томат (помидор) — растение рода паслён, семейства Паслёновые, одно или многолетняя трава. Возделывается как овощная культура. Плоды томата известны под названием помидоры. Вид плода — ягода. ИсторияРодина — Южная Америка, где до сих пор встречаются дикие и полукультурные формы томата. В середине XVI века томат попал в Испанию, По

Где найти образец склонения субстантивированных существительных
Склонение имён существительных Склонение — это изменение имён существительных (и других именных частей речи) по падежам и числам. В русском языке два числа: единственное (окно, парта) и множественное (окна, парты); шесть падежей (по школьной программе). Падеж Вопросы падежей Именительный кто? что? Родительный кого? чего? Датель

Какие актрисы исполнили главные роли в сериале "Краткий курс счастливой жизни" на Первом канале
В российском телевизионном сериале «Краткий курс счастливой жизни», снятом в 2011 году режиссером Валерией Гай Германикой для Первого канала, главные роли исполнили 4 актрисы: Алиса Хазанова исполнила роль Любы; Светлана Ходченкова исполнила роль Саши; Анна Слю исполнила роль Ани; Ксения Громова исполнила роль Кати. Во второстепе

Чему равен синус 90 градусов
Синус — одна из тригонометрических функций, обозначется sin. В прямоугольном треугольнике синус острого угла равен отношению катета, лежащего напротив этого угла (противолежащего катета), к гипотенузе.Значения синусов для часто встречающихся углов (π — число пи, √ — корень квадра

Где в интернете есть платные аудиокурсы английского языка
Платные аудиокурсы английского языка можно найти под приведенными ниже ссылками: shop.iddk.ru — аудиокурсы английского языка на диске; london.ru — аудиокурсы на дисках, а так же книги; volxv.ru — аудио-видео курсы английского языка; ozon.ru — аудиокурсы на дисках


Информационно-рекрутинговые порталы Superjob.ru - рекрутинговый портал Superjob.ru работает на российском рынке онлайн-рекрутмента с 2000 года и является лидером среди ресурсов, предлагающих поиск работы и персонала. Ежедневно в базу данных сайта добавляется более 80 000 резюме специалистов и более 10 000 вакансий.



В продолжение темы:
Стрижки и прически

Для приготовления сырков понадобятся силиконовые формочки среднего размера и силиконовая кисточка. Я использовала молочный шоколад, необходимо брать шоколад хорошего качества,...

Новые статьи
/
Популярные