Неокортекс – рациональный мозг. Знаете ли вы, что у человека три мозга

Новая кора (неокортекс) представляет собой слой серого вещества общей площадью 1500-2200 квадратных сантиметров, покрывающий большие полушария. Новая кора составляет около 72% всей площади коры и около 40% массы головного мозга. В новой коре имеется 14 млр. Нейронов, а количество глиальных клеток приблизительно в 10 раз больше.

Кора головного мозга в филогенетическом плане является наиболее молодой нервной структурой. У человека она осуществляет высшую регуляцию функций организма и психофизиологические процессы, обеспечивающие различные формы поведения.

В направлении с поверхности новой коры вглубь различают шесть горизонтальных слоев.

    Молекулярный слой. Имеет очень мало клеток, но большое количество ветвящихся дендриов пирамидных клеток, формирующих сплетение, расположенное параллельно поверхности. На этих дендритах образуют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

    Наружный зернистый слой. Составлен в основном звездчатыми и частично пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, образуя кортикокортикальные связи.

    Наружный пирамидный слой. Состоит преимущественно из пирамидных клеток средней величины. Аксоны этих клеток как и зернистые клетки 2-го слоя, образуют кортикокортикальные ассоциативные связи.

    Вгутренний зернистый слой. По характеру клеток (звездчатые клетки) и расположению их волокон аналогичен наружному зернистому слою. В этом слое афферентные волокна имеют синаптические окончания, идущие от нейронов специфических ядер таламуса и, следовательно, от рецепторов сенсорных систем.

    Внутренний пирамидный слой. Образован средними и крупными пирамидными клетками. Причем, гигантские пирамидные клетки Беца расположены в двигательной коре. Аксоны этих клеток образуют афферентные кортикоспинальные и кортикобульбарный двигательные пути.

    Слой полиморфных клеток. Образован преимущественно веретенообразными клетками, аксоны которых образуют кортикоталамические пути.

Оценивая в целом афферентные и эфферентные связи новой коры, необходимо отметить, что в слоях 1 и 4 происходят восприятие и обработка поступающих в кору сигналов. Нейроны 2 и 3 слоев осуществляют кортикокортикальные ассоциативные связи. Покидающие кору эфферентные пути формируются преимущественно в 5 и 6 слоях.

Гистологические данные показывают, что элементарные нейронные цепи, участвующие в обработке информации, расположены перпендикулярно поверхности коры. При этом они расположены таким образом, что захватывают все слои коры. Такие объединения нейронов были названы учеными нейронными колонками . Соседние нейронные колонки могут частично перекрываться, а также взаимодействовать друг с другом.

Возрастание в филогенезе роли коры большого мозга, анализ и регуляция функций организма и подчинение себе нижележащих отделов центральной нервной системы учеными определено как кортикализация функций (объединение).

Наряду с кортикализацией функций новой коры, принято выделять и локализацию ее функций. Наиболее часто используемым подходом к функциональному разделению коры головного мозга является выделение в ней сенсорной, ассоциативной и двигательной областей.

Сенсорные области коры – зоны, в которые проецируются сенсорные раздражители. Они расположены преимущественно в теменной, височной и затылочной долях. Афферентные пути в сенсорную кору поступают преимущественно от специфических сенсорных ядер таламуса (центральных, задних латерального и медиального). Сенсорная кора имеет хорошо выраженные 2 и 4 слои и называется гранулярной.

Зоны сенсорной коры, раздражение или разрушение которых вызывает четкие и постоянные изменения чувствительности организма, называются первичными сенсорными областями (ядерными частями анализаторов, как полагал И.П.Павлов). Они состоят преимущественно из мономодальных нейронов и формируют ощущения одного качества. В первичных сенсорных зонах обычно имеется четкое пространственное (топографическое) представительство частей тела, их рецепторных полей.

Вокруг первичных сенсорных зон находятся менее локализованные вторичные сенсорные зоны , полимодальные нейроны которых отвечают на действие нескольких раздражителей.

Важнейшей сенсорной областью является теменная кора постцентральной извилины и соответствующая ей часть постцентральной дольки на медиальной поверхности полушарий (поля 1 – 3), которую обозначают как соматосенсорную область . Здесь имеется проекция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептивной чувствительности и чувствительности опорно-мышечного аппарата от мышечных, суставных, сухожильных рецепторов. Проекция участков тела в этой области характеризуется тем, что проекция головы и верхних отделов туловища расположена в нижнелатеральных участках постцентральной извилины, проекция нижней половины туловища и ног – в верхнемедиальных зонах извилины, а проекция нижней части голени и стоп – в коре постцентральной дольки на медиальной поверхности полушарий (Рис. 12).

При этом проекция наиболее чувствительных участков (язык, гортань, пальцы рук и т.д.) имеет относительно большие зоны по сравнению с другими частями тела.

Рис. 12. Проекция частей тела человека на область коркового конца анализатора общей чувствительности

(разрез мозга во фронтальной плоскости)

В глубине латеральной борозды располагается слуховая кора (кора поперечных височных извилин Гешля). В этой зоне в ответ на раздражение слуховых рецепторов кортиева органа формируются звуковые ощущения, изменяющиеся по громкости, тону и другим качествам. Здесь имеется четкая топическая проекция: в разный участках коры представлены различные участки кортиева органа. К проекционной коре височной доли относится также, как предполагают ученые, центр вестибулярного анализатора в верхней и средней височных извилинах. Обработанная сенсорная информация используется для формирования «схемы тела» и регуляции функций мозжечка (височно-мосто-мозжечковый путь).

Еще одна область новой коры расположена в затылочной коре. Это первичная зрительная область . Здесь имеется топическое представительство рецепторов сетчатки. При этом каждой точке сетчатки соответствует свой участок зрительной коры. В связи с неполным перекрестом зрительных путей в зрительную область каждого полушария проецируются одноименные половины сетчатки. Наличие в каждом полушарии проекции сетчатки обоих глаз является основой бинокулярного зрения. Раздражение коры мозга в этой области приводит к возникновению световых ощущений. Около первичной зрительной области располагается вторичная зрительная область . Нейроны этой области полимодальны и отвечают не только на световые, но и на тактильные, а также на слуховые раздражители. Не случайно именно в этой зрительной области происходит синтез различных видов чувствительности и возникают более сложные зрительные образы и их опознание. Раздражение этой области коры вызывает зрительные галлюцинации, навязчивые ощущения, движения глаз.

Основная часть информации об окружающем мире и внутренней среде организма, поступившая в сенсорную кору, передается для дальнейшей обработки в ассоциативную кору.

Ассоциативные области коры (межсенсорная, межанализаторная), включает участки новой коры большого мозга, которые расположены рядом с сенсорными и двигательными зонами, но не выполняют непосредственно чувствительных или двигательных функций. Границы этих областей обозначены недостаточно четко, что связано со вторичными проекционными зонами, функциональные свойства которых являются переходными между свойствами первичных проекционных и ассоциативных зон. Ассоциативная коры является филогенетически наиболее молодой областью новой коры, получившей наибольшее развитие у приматов и человека. У человека она составляет около 50% всей коры или 70% неокортекса.

Основной физиологической особенностью нейронов ассоциативной коры, отличающей их от нейронов первичных зон, является полисенсорность (полимодальность). Они отвечают с практически одинаковым порогом не на один, а на несколько раздражителей – зрительные, слуховые, кожные и пр. Полисенсорность нейронов ассоциативной коры создается как ее кортикокортикальными связями с разными проекционными зонами, так и главным ее афферентным входом от ассоциативных ядер таламуса, в которых уже произошла сложная обработка информации от различных чувствительных путей. В результате этого ассоциативная кора представляет собой мощный аппарат конвергенции различных сенсорных возбуждений, позволяющий произвести сложную обработку информации о внешней и внутренней среде организма и использовать ее для осуществления высших психических функций.

По таламокортикальным проекциям выделяют две ассоциативные системы мозга:

    таламотеменную;

    таломовисочную.

Таламотеменная система представлена ассоциативными зонами теменной коры, получающими основные афферентные входы от задней группы ассоциативных ядер таламуса (латеральное заднее ядро и подушка). Теменная ассоциативная кора имеет афферентные выходы на ядра таламуса и гипоталамуса, моторную кору и ядра экстрапирамидной системы. Основными функциями таламотеменной системы являются гнозис, формирование «схемы тела» и праксис.

Гнозис – это различные виды узнавания: формы, величины, значения предметов, понимание речи и пр. К гностическим функциям относится оценка пространственных отношений, например взаимного расположения предметов. В теменной коре выделяют центр стереогнозиса (расположен сзади от средних отделов постцентральной извилины). Он обеспечивает способность узнавания предметов на ощупь. Вариантом гностической функции является также и формирование в сознании трехмерной модели тела («схемы тела»).

Под праксисом понимают целенаправленное действие. Центр праксиса находится в надкраевой извилине и обеспечивает хранение и реализацию программы двигательных автоматизированных актов (например, причесывание, рукопожатие и пр.).

Таламолобная система . Представлена ассоциативными зонами лобной коры, имеющими основной афферентный вход от медиодорсального ядра таламуса. Главной функцией лобной ассоциативной коры является формирование программ целенаправленного поведения, особенно в новой для человека обстановке. Реализация данной функции основывается на других функциях таломолобной системы, таких как:

    формирование доминирующей мотивации, обеспечивающей направление поведения человека. Эта функция основана на тесных двусторонних связях лобной коры и лимбической системы и ролью последней в регуляции высших эмоций человека, связанных с его социальной деятельностью и творчеством;

    обеспечение вероятностного прогнозирования, что выражается в изменении поведения в ответ на изменения обстановки окружающей среды и доминирующей мотивации;

    самоконтроль действий путем постоянного сравнения результата действия с исходными намерениями, что связано с созданием аппарата предвидения (согласно теории функциональной системы П.К.Анохина, акцептор результата действия).

В результате проведения по медицинским показаниям префронтальной лоботомии, при которой пересекаются связи между лобной долей и таламусам, наблюдается развитие «эмоциональной тупости», отсутствие мотивации, твердых намерений и планов, основанных на прогнозировании. Такие люди становятся грубыми, нетактичными, у них появляется тенденция к повторению каких-либо двигательных актов, хотя изменившаяся обстановка требует выполнения совсем других действий.

Наряду с таламотеменной и таламолобной системами, некоторые ученые предлагают выделять и таламовисочную систему. Однако концепция таламовисочной системы до настоящего времени не получает подтверждения и достаточной научной проработки. Ученые отмечают определенную роль височной коры. Так, некоторые ассоциативные центры (например, стереогнозиса и праксиса) включают в себя и участки височной коры. В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины. Именно данный центр обеспечивает речевой гнозис – распознавание и хранение устной речи, как собственной, так и чужой. В средней части верхней височной извилины находится центр распознания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей находится центр чтения письменной речи, обеспечивающий распознание и хранение образов письменной речи.

Также необходимо отметить, что психофизиологические функции, осуществляемые ассоциативной корой, инициируют поведение, обязательным компонентом которого являются произвольные и целенаправленные движения, осуществляемые при обязательном участии двигательной коры.

Двигательные области коры . Понятие о двигательной коре больших полушарий начало формироваться с 80-х годов Х1Х в., когда было показано, что электрическое раздражение некоторых корковых зон у животных вызывает движение конечностей противоположной стороны. На основании современных исследований в двигательной коре принято выделять две моторные области: первичную и вторичную.

В первичной моторной коре (прецентральная извилина) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топография проекций мышц тела. При этом проекции мышц нижних конечностей и туловища расположены в верхних участках прецентральной извилины и занимают сравнительно небольшую площадь, а проекция мышц верхних конечностей, лица и языка расположены в нижних участках извилины и занимают большую площадь. Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Двигательные реакции на раздражение первичной моторной коры осуществляется с минимальным порогом, что говорит о ее высокой возбудимости. Они (эти двигательные реакции) представлены элементарными сокращениями противоположной стороны тела. При поражении этой корковой области утрачивается способность к тонким координированным движениям конечностей, особенно пальцев рук.

Вторичная двигательная кора . Расположена на латеральной поверхности полушарий, впереди прецентральной извилины (премоторная кора). Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Премоторная кора получает основную часть эфферентной импульсации базальных ганглиев и мозжечка и участвует в перекодировании информации о плане сложных движений. Раздражение данной области коры вызывает сложные координированные движения (например, поворот головы, глаз и туловища в противоположные стороны). В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: в заднем отделе средней лобной извилины располагается центр письменной речи, в заднем отделе нижней лобной извилины располагается центр моторной речи (центр Брока), а также музыкальный моторный центр, определяющий тональность речи и способность петь.

Моторную кору часто называют агранулярной корой, поскольку в ней плохо выражены зернистые слои, но более ярко выражен слой, содержащий гигантские пирамидные клетки Беца. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ганглиев и мозжечка. Основной эфферентный выход двигательной коры на стволовые и спинальные моторные центры формируют пирамидные клетки. Пирамидные и сопряженные с ними вставочные нейроны расположены вертикально по отношению к поверхности коры. Такие рядом лежащие нейронные комплексы, выполняющие сходные функции, называют функциональными двигательными колонками . Пирамидные нейроны двигательной колонки могут возбуждать или тормозить мотонейроны стволовых и спинальных центров. Соседние колонки в функциональном плане перекрываются, а пирамидные нейроны, регулирующие деятельность одной мышцы, расположены, как правило, в нескольких колонках.

Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути, начинающиеся от гигантских пирамидных клеток Беца и менее крупных пирамидных клеток коры прецентральной извилины, премоторной коры и постцентральной извилины.

Пирамидный путь состоит из 1 млн волокон кортикоспинальньного пути, начинающихся от коры верхней и средней трети перцентральной извилины, и 20 млн волокон кортикобульбарного пути, начинающегося от коры нижней трети прецентральной извилины. Через двигательную кору и пирамидные пути осуществляются произвольные простые и сложные целенаправленные двигательные программы (например, профессиональные навыки, формирование которых начинается в базальных ганглиях и заканчивается во вторичной моторной коре). Большинство волокон пирамидных путей осуществляет перекрест. Но небольшая их часть остается неперекрещенными, что способствует компенсации нарушенных функций движения при односторонних поражениях. Через пирамидные пути осуществляет свои функции и премоторная кора (двигательные навыки письма, поворот головы и глаз в противоположную сторону и пр.).

К корковым экстрапирамидным путям относятся кортикобульбарные и кортикоретикулярные пути, начинающиеся приблизительно в той же области, что и пирамидные пути. Волокна кортикобульбарного пути оканчиваются на нейронах красных ядер среднего мозга, от которых далее идут руброспинальные пути. Волокна кортикоретикулярных путей оканчиваются на нейронах медиальных ядер ретикулярной формации моста (от них идут медиальные ретикулоспинальные пути) и на нейронах ретикулярных гигантоклеточных ядер продолговатого мозга, от которых начинаются латеральные ретикулоспинальные пути. Через эти пути осуществляется регуляция тонуса и позы, обеспечивающих точные целенаправленные движения. Корковые экстрапирамидные пути являются компонентом экстрапирамидной системы головного мозга, к которой относятся мозжечок, базальные ганглии, моторные центры ствола. Данная система осуществляет регуляцию тонуса, позы, координацию и коррекцию движений.

Оценивая в общем роль различных структур головного и спинного мозга в регуляции сложных направленных движений, можно отметить, что побуждение (мотивация) к движению создается в лобной системе, замысел движения – в ассоциативной коре больших полушарий, программа движений – в базальных ганглиях, мозжечке и премоторной коре, а выполнение сложных движений происходит через двигательную кору, моторные центры ствола и спинного мозга.

Межполушарные взаимоотношения Межполушарные взаимоотношения проявляются у человека в двух главных формах:

    функциональной асимметрии больших полушарий:

    совместной деятельности больших полушарий.

Функциональная асимметрия полушарий является важнейшим психофизиологическим свойством головного мозга человека. Исследование функциональной асиммертии полушарий началось в середине Х1Х в., когда французские медики М.Дакс и П.Брока показали, что нарушение речи человека возникает при поражении коры нижней лобной извилины, как правило левого полушария. Некоторое время спустя немецкий психиатр К.Вернике обнаружил в коре заднего отдела верхней височной извилины левого полушария слуховой центр речи, поражение которого приводит к нарушению понимания устной речи. Эти данные и наличие моторной асимметрии (праворукости) способствовало формированию концепции, согласно которой для человека характерно левополушарное доминирование, образовавшееся эволюционно в результате трудовой деятельности и являющееся специфическим свойством его мозга. В ХХ столетии в результате применения различных клинических методик (особенно при исследовании больных с расщепленным мозгом – осуществлялась перерезка мозолистого тела), было показано, что по ряду психофизиологических функций у человека доминирует не левое, а правое полушарие. Таким образом возникла концепция частичного доминирования полушарий (ее автором является Р.Сперри).

Принято выделять психическую , сенсорную и моторную межполушарную асимметрии мозга. Опять же, при исследовании речи было показано, что словесный информационный канал контролируется левым полушарием, а несловесный канал (голос, интонация) – правым. Абстрактное мышление и сознание связаны преимущественно с левым полушарием. При выработке условного рефлекса в начальной фазе доминирует правое полушарие, а во время упражнений, то есть упрочения рефлекса – левое. Правое полушарие осуществляет обработку информации одновременно статически, по принципу дедукции, лучше воспринимаются пространственные и относительные признаки предметов. Левое полушарие производит обработку информации последовательно, аналитически, по принципу индукции, лучше воспринимает абсолютные признаки предметов и временные отношения. В эмоциональной сфере правое полушарие обусловливает преимущественно более древние, отрицательные эмоции, контролирует проявление сильных эмоций. В целом правое полушарие «эмоционально». Левое полушарие обусловливает в основном положительные эмоции, контролирует проявление более слабых эмоций.

В сенсорной сфере роль правого и левого полушарий лучше всего проявляется при зрительном восприятии. Правое полушарие воспринимает зрительный образ целостно, сразу во всех подробностях, легче решает задачу различения предметов и опознания визуальных образов предметов, которые трудно описать словами, создает предпосылки конкретно-чувственного мышления. Левое полушарие оценивает зрительный образ расчленено. Легче опознаются знакомые предметы и решаются задачи сходства предметов, зрительные образы лишены конкретных подробностей и имеют высокую степень абстракции, создаются предпосылки логического мышления.

Моторная асимметрия связана с тем, что мышцы полушарий, обеспечивая новый, более высокий уровень регуляции сложных функций мозга, одновременно повышает требования к совмещению деятельности двух полушарий.

Совместная деятельность больших полушарий обеспечивается наличием комиссуральной системы (мозолистого тела, передней и задней, гиппокампальной и хабенулярной комиссур, межталамического сращения), которые анатомически соединяют два полушария головного мозга.

Клинические исследования показали, что помимо поперечных комиссуральных волокон, обеспечивающих взаимосвязь полушарий мозга, также и продольных, а также вертикальных комиссуральных волокон.пе

Вопросы для самоконтроля:

    Общая характеристика новой коры.

    Функции новой коры.

    Строение новой коры.

    Что такое нейронные колонки?

    Какие области коры выделяются учеными?

    Характеристика сенсорной коры.

    Что такое первичные сенсорные области? Их характеристика.

    Что такое вторичные сенсорные зоны? Их функциональное назначение.

    Что такое соматосенсорная область коры и где она располагается?

    Характеристика слуховой области коры.

    Первичная и вторичные зрительные области. Их общая характеристика.

    Характеристика ассоциативной области коры.

    Характеристика ассоциативных систем мозга.

    Что собой представляет таламотеменная система. Ее функции.

    Что собой представляет таламолобная система. Ее функции.

    Общая характеристика двигательной коры.

    Первичная моторная кора; ее характеристика.

    Вторичная моторная кора; ее характеристика.

    Что такое функциональные двигательные колонки.

    Характеристика корковых пирамидных и экстрапирамидных путей.

НЕОКОРТЕКС НЕОКОРТЕКС

(от нео... и лат. cortex- кора, скорлупа), новая кора, неопаллиум, осн. часть коры больших полушарий головного мозга. Н. осуществляет высший уровень координации работы мозга и формирования сложных форм поведения. В процессе эволюции Н. впервые появляется у пресмыкающихся, у к-рых он незначителен по размерам и сравнительно просто устроен (т. н. боковая кора). Типичное многослойное строение Н. получает только у млекопитающих, у к-рых он состоит из 6-7 слоев клеток (пирамидных, звёздчатых, веретенообразных) и подразделяется на доли: лобную, теменную, височную, затылочную и медиобазальную. В свою очередь, доли подразделяются на области, подобласти и поля, отличающиеся по клеточному строению и связям с глубокими отделами мозга. Наряду с проекционными (вертикальными) волокнами нейроны Н. образуют ассоциативные (горизонтальные) волокна, к-рые у млекопитающих и особенно у человека собраны в анатомически выраженные пучки (напр., затылочно-лобный пучок), обеспечивающие одновременную координированную активность разл. зон Н. В составе Н. выделяют наиб, сложно построенную ассоциативную кору, к-рая в процессе эволюции испытывает наибольшее увеличение, тогда как первичные сенсорные поля Н. относительно уменьшаются. (см. КОРА БОЛЬШИХ ПОЛУШАРИЙ ГОЛОВНОГО МОЗГА).

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)


Смотреть что такое "НЕОКОРТЕКС" в других словарях:

    Неокортекс …

    Новая кора (синонимы: неокортекс, изокортекс) (лат. neocortex) новые области коры головного мозга, которые у низших млекопитающих только намечены, а у человека составляют основную часть коры. Новая кора располагается в верхнем слое полушарий… … Википедия

    неокортекс - 3.1.15 неокортекс: Новая кора головного мозга, обеспечивающая осуществление интеллектуальной мыслительной деятельности мышлением человека. 3.1.16 Источник … Словарь-справочник терминов нормативно-технической документации

    - (neocortex; нео + лат. cortex кора) см. Кора новая … Большой медицинский словарь

    неокортекс - у, ч. Еволюційно найновіша і найскладніша з нервових тканин, з якої складаються лобові, тім яні, скроневі та потиличні частки мозку … Український тлумачний словник

    НЕОКОРТЕКС (НОВАЯ КОРА) - Эволюционно самая новая и наиболее сложная из нервных тканей. Лобные, теменные, височные и затылочные доли мозга состоят из неокортекса … Толковый словарь по психологии

    Архи, палео, неокортекс … Орфографический словарь-справочник

    кора головного мозга - мозг головной: кора (кора головного мозга) верхний слой полушарий мозга головного, состоящий прежде всего из нервных клеток с вертикальной ориентацией (пирамидные клетки), а также из пучков афферентных (центростремительных) и эфферентных… … Большая психологическая энциклопедия

    Термин кора (cortex) относится к любому наружному слою клеток головного мозга. Мозг млекопитающих имеет три вида коры: грушевидную кору (pyriform cortex), к рая обладает обонятельными функциями; старую кору (архикортекс), составляющую осн. часть… … Психологическая энциклопедия

Кора головного мозга. Нейронная организация новой коры. Кортикализация функций

Новая кора (неокортекс) - это слой серого вещества, общая площадь которого достигает 2 тыс. см 2 за счет складок; неокортекс покрывает большие полушария и составляет около 70% всей площади коры. В направлении с поверхности вглубь неокортекс имеет 6 горизонтальных слоев (см. рис. 72), архиокортекс - 3, палеокортекс - 4-5.

Функциональные слои новой коры большого мозга.

I. Молекулярный слой имеет мало клеток, но содержит большое количество ветвящихся, восходящих дендритов пирамидных клеток, на которых образуют синапсы волокна, приходящие от ассоциативных и неспецифических ядер таламуса и регулирующие уровень возбудимости коры .

Рис. 72. Структура коры большого мозга. I – молекулярный слой; II – наружный зернистый слой; III – слой пирамидных клеток; IV – внутренний зернистый слой; V – слой больших пирамидных клеток; VI – слой веретенообразных клеток (полиморфный слой) (Гайтон, 2008)

II. Наружный зернистый слой содержит в основном звездчатые клетки и, частично, малые пирамидные клетки. Волокна его клеток располагаются преимущественно вдоль поверхности коры, образуя кортико-кортикальные связи .

III. Пирамидный слой сформирован в основном из пирамидных клеток средней величины, аксоны которых образуют кортико-кортикальные ассоциативные связи , как и зернистые клетки II слоя.

IV. Внутренний зернистый слой образован звездчатыми клетками, на которых имеются синапсы от волокон нейронов специфических ядер таламуса и метаталамуса, несущих информацию от рецепторов сенсорных систем .

V. Ганглионарный слой представлен средними и крупными пирамидными клетками. Причем гигантские пирамидные клетки Беца расположены в двигательной коре, их аксоны образуют пирамидные пути - кортикобульбарный и кортикоспинальный двигательные пути (пирамидные пути) .

VI. Слой полиморфных клеток , аксоны которых образуют кортикоталамические пути .

В слоях I и IV новой коры происходит восприятие и обработка поступающих сигналов. Нейроны II и III слоев осуществляют кортико-кортикальные ассоциативные связи. Нейроны V и VI слоев формируют нисходящие пути.

Функциональные нейронные колонки новой коры большого мозга. В коре мозга имеются функциональные объединения нейронов, расположенные в цилиндрике диаметром 0,5-1,0 мм, включающем все слои коры и содержащем несколько сотен нейронов (нейронные колонки ). Об этом, в частности, свидетельствуют электрофизиологические исследования В. Маунткасла (1957) с погружением микроэлектродов перпендикулярно к поверхности соматосенсорной коры. При этом все встречаемые на пути нейроны отвечают на раздражитель только одного вида (например, свет). При погружении электрода под углом на его пути попадались нейроны разной сенсорности. Колонки обнаружены в моторной коре и различных зонах сенсорной коры. Нейроны колонки могут осуществлять саморегуляцию по типу возвратного торможения. Соседние нейронные колонки могут частично перекрываться, а также взаимодействовать друг с другом по механизму латерального торможения.

Кортикализация функций . Под кортикализацией функций понимают возрастание в филогенезе роли коры большого мозга в регуляции функций организма и подчинение себе нижележащих отделов ЦНС, в обеспечении психической деятельности организма. Например, регуляция локомоторных двигательных функций (прыжки, ходьба, бег) и выпрямительных рефлексов у низших позвоночных полностью обеспечивается стволом мозга, и удаление больших полушарий практически их не изменяет. У кошек после перерезки ствола между средним и промежуточным мозгом локомоция сохраняется лишь частично. Выключение коры большого мозга в эксперименте у обезьян и в патологических случаях у человека ведет к потере не только произвольных движений, локомоции, но и выпрямительных рефлексов.

Кора головного мозга является центром высшей нервной (психической) деятельности человека и контролирует выполнение огромного количества жизненно важных функций и процессов. Она покрывает всю поверхность больших полушарий и занимает около половины их объема.

Большие полушария головного мозга занимают около 80% объема черепной коробки, и состоят из белого вещества, основа которого состоит из длинных миелиновых аксонов нейронов. Снаружи полушария покрывает серое вещество или кора головного мозга, состоящая из нейронов, безмиелиновых волокон и глиальных клеток, которые также содержатся в толще отделов этого органа.

Поверхность полушарий условно делится на несколько зон, функциональность которых заключается в управлении организмом на уровне рефлексов и инстинктов. Также в ней находятся центры высшей психической деятельности человека, обеспечивающие сознание, усвоение поступившей информации, позволяющей адаптироваться в окружающей среде, и через нее, на уровне подсознания, посредством гипоталамуса контролируется вегетативная нервная система (ВНС), управляющая органами кровообращения, дыхания, пищеварения, выделения, размножения, а также метаболизмом.

Для того чтобы разобраться что такое кора мозга и каким образом осуществляется ее работа, требуется изучить строение на клеточном уровне.

Функции

Кора занимает большую часть больших полушарий, а ее толщина не равномерна по всей поверхности. Такая особенность обусловлена большим количеством связующих каналов с центральной нервной системой (ЦНС), обеспечивающих функциональную организацию коры мозга.

Эта часть головного мозга начинает образовываться еще во время внутриутробного развития и совершенствуется на протяжении всей жизни, посредством получения и обработки сигналов, поступающих из окружающей среды. Таким образом, она отвечает за выполнение следующих функций головного мозга:

  • связывает органы и системы организма между собой и окружающей средой, а также обеспечивает адекватную реакцию на изменения;
  • обрабатывает поступившую информацию от моторных центров с помощью мыслительных и познавательных процессов;
  • в ней формируется сознание, мышление, а также реализовывается интеллектуальный труд;
  • осуществляет управление речевыми центрами и процессами, характеризующими психоэмоциональное состояние человека.

При этом данные поступают, обрабатываются, сохраняются благодаря значительному количеству импульсов, проходящих и образующихся в нейронах, связанных длинными отростками или аксонами. Уровень активности клеток можно определить по физиологическому и психическому состоянию организма и описать с помощью амплитудных и частотных показателей, так как природа этих сигналов похожа на электрические импульсы, а их плотность зависит от участка, в котором происходит психологический процесс.

До сих пор неясно, каким образом лобная часть коры больших полушарий влияет на работу организма, но известно, что она мало восприимчива к процессам, происходящим во внешней среде, поэтому все опыты с воздействием электрических импульсов на этот участок мозга, не находят яркого отклика в структурах. Однако отмечается, что люди, у которых лобная часть повреждена, испытывают проблемы в общении с другими индивидами, не могут реализовать себя в какой-либо трудовой деятельности, а также им безразличен их внешний вид и сторонние мнение. Иногда встречаются и другие нарушения в осуществлении функций этого органа:

  • отсутствие концентрации внимания на предметах обихода;
  • проявление творческой дисфункции;
  • нарушения психоэмоционального состояния человека.

Поверхность коры полушарий поделена на 4 зоны, очерченные наиболее четкими и значимыми извилинами. Каждая из частей при этом контролирует основные функции коры головного мозга:

  1. теменная зона - отвечает за активную чувствительность и музыкальное восприятие;
  2. в затылочной части расположена первичная зрительная область;
  3. височная или темпоральная отвечает за речевые центры и восприятие звуков поступивших из внешней среды, кроме того участвует в формировании эмоциональных проявлений, таких как радость, злость, удовольствие и страх;
  4. лобная зона управляет двигательной и психической активностью, а также руководит речевой моторикой.

Особенности строения коры мозга

Анатомическое строение коры больших полушарий обусловливает ее особенности и позволяет выполнять возложенные на нее функции. Кора головного мозга владеет следующим рядом отличительных черт:

  • нейроны в ее толще располагаются послойно;
  • нервные центры находятся в конкретном месте и отвечают за деятельность определенного участка организма;
  • уровень активности коры зависит от влияния ее подкорковых структур;
  • она имеет связи со всеми нижележащими структурами центральной нервной системы;
  • наличие полей разных по клеточному строению, что подтверждается гистологическим исследованием, при этом каждое поле отвечает за выполнение какой-либо высшей нервно деятельности;
  • присутствие специализированных ассоциативных областей позволяет устанавливать причинно-следственную связь между внешними раздражителями и ответом организма на них;
  • способность к замещению поврежденных участков близлежащими структурами;
  • этот отдел мозга способен сохранять следы возбуждения нейронов.

Большие полушария головного мозга состоят главным образом из длинных аксонов, а также содержит в своей толще скопления нейронов, образующих наибольшие ядра основания, которые входят в состав экстрапирамидальной системы.

Как уже говорилось, формирование коры мозга происходит еще во время внутриутробного развития, причем вначале кора состоит из нижнего слоя клеток, а уже в 6 месяцев ребенка в ней сформированы все структуры и поля. Окончательное становление нейронов происходит к 7-летнему возрасту, а рост их тел завершается в 18 лет.

Интересен тот факт, что толщина коры не равномерна на всей протяженности и включает в себя разное количество слоев: например, в области центральной извилины она достигает своего максимального размера и насчитывает все 6 слоев, а участки старой и древней коры имеют 2-х и 3-х слойное строение соответственно.

Нейроны этой части мозга запрограммированы на восстановление поврежденного участка посредством синоптических контактов, таким образом каждая из клеток активно старается восстановить поврежденные связи, что обеспечивает пластичность нейронных корковых сетей. Например, при удалении или дисфункции мозжечка, нейроны, связывающие его с конечным отделом, начинают прорастать в кору больших полушарий. Кроме того пластичность коры также проявляется в обычных условиях, когда происходит процесс обучения новому навыку или в результате патологии, когда функции, выполняемые поврежденной зоной, переходят на соседние участки мозга или даже полушария.

Кора мозга обладает способностью сохранять следы возбуждения нейронов длительное время. Эта особенность позволяет обучаться, запоминать и отвечать определенной реакцией организма на внешние раздражители. Так происходит формирование условного рефлекса, нервный путь которого состоит из 3 последовательно соединенных аппарата: анализатора, замыкательного аппарата условно-рефлексных связей и рабочего прибора. Слабость замыкательной функции коры и следовых проявлений можно наблюдать у детей с выраженной умственной отсталостью, когда образовавшиеся условные связи между нейронами хрупки и ненадежны, что влечет за собой трудности в обучении.

Кора головного мозга включает в себя 11 областей, состоящих из 53 полей, каждому из которых в нейрофизиологии присвоен свой номер.

Области и зоны коры

Кора относительно молодая часть ЦНС, развывшаяся из конечного отдела мозга. Эволюционно становление этого органа происходило поэтапно, поэтому ее принято разделять на 4 типа:

  1. Архикортекс или древняя кора в связи с атрофией обоняния превратился в гиппокамповую формацию и состоит из гиппокампа и сопряженных ему структур. С помощью ее регулируется поведение, чувства и память.
  2. Палеокортекс или старая кора, составляет основную часть обонятельной зоны.
  3. Неокортекс или новая кора имеет толщину слоя около 3-4 мм. Является функциональной частью и совершает высшую нервную деятельность: обрабатывает сенсорную информацию, отдает моторные команды, а также в ней формируется осознанное мышление и речь человека.
  4. Мезокортекс является промежуточным вариантом первых 3 типов коры.

Физиология коры больших полушарий

Кора головного мозга имеет сложную анатомическую структуру и включает в себя сенсорные клетки, моторные нейроны и интернероны, обладающих способностью останавливать сигнал и возбуждаться в зависимости от поступивших данных. Организация этой части мозга построена по колончатому принципу, в котором колонки делаться на микромодули, имеющие однородное строение.

Основу системы микромодулей составляют звездчатые клетки и их аксоны, при этом все нейроны одинаково реагируют на поступивший афферентный импульс и посылают также синхронно в ответ эфферентный сигнал.

Формирование условных рефлексов, обеспечивающих полноценное функционирование организма, и происходит благодаря связи головного мозга с нейронами, расположенными в различных частях тела, а кора обеспечивает синхронизацию умственной деятельности с моторикой органов и областью, отвечающей за анализ поступающих сигналов.

Передача сигнала в горизонтальном направлении происходит через поперечные волокна, находящиеся в толще коры, и передают импульс от одной колонки к другой. По принципу горизонтальной ориентации кору мозга можно поделить на следующие области:

  • ассоциативная;
  • сенсорная (чувствительная);
  • моторная.

При изучении этих зон применялись различные способы воздействия на нейроны, входящие в ее состав: химическое и физическое раздражение, частичное удаление участков, а также выработка условных рефлексов и регистрация биотоков.

Ассоциативная зона связывает поступившую сенсорную информацию с полученными ранее знаниями. После обработки формирует сигнал и передает его в двигательную зону. Таким образом она участвует в запоминании, мышлении и обучении новым навыкам. Ассоциативные участки коры головного мозга расположены в близости с соответствующей сенсорной зоной.

Чувствительная или сенсорная зона занимает 20% коры головного мозга. Она также состоит из нескольких составляющих:

  • соматосенсорной, расположенной в теменной зоне отвечает за тактильную и вегетативную чувствительность;
  • зрительной;
  • слуховой;
  • вкусовой;
  • обонятельной.

Импульсы от конечностей и органов осязания левой стороны тела, поступают по афферентным путям в противоположную долю больших полушарий для последующей обработки.

Нейроны моторной зоны возбуждаются при помощи импульсов, поступивших от клеток мускулатуры, и находятся в центральной извилине лобной доли. Механизм поступления данных схож с механизмом сенсорной зоны, так как двигательные пути образуют перехлест в продолговатом мозге и следуют в расположенную напротив моторную зону.

Извилины борозды и щели

Кора больших полушарий образована несколькими слоями нейронов. Характерной особенностью этой части мозга является большое количество морщин или извилин, благодаря чему ее площадь во много раз превосходит площадь поверхности полушарий.

Корковые архитектонические поля определяют функциональное строение участков коры головного мозга. Все они различны по морфологическим признакам и регулируют разные функции. Таким образом выделяется 52 различных поля, расположенных на определенных участках. По Бродману это разделение выглядит следующим образом:

  1. Центральная борозда разделяет лобную долю от теменной области, впереди нее пролегает предцентральная извилина, а сзади - позадицентральная.
  2. Боковая борозда отгораживает теменную зону от затылочной. Если развести ее боковые края то внутри можно рассмотреть ямку, в центре которой имеется островок.
  3. Теменно-затылочная борозда отделяет теменную долю от затылочной.

В предцентральной извилине расположено ядро двигательного анализатора, при этом к мышцам нижней конечности относятся верхние части передней центральной извилины, а к мышцам полости рта, глотки и гортани – нижние.

Правосторонняя извилина образует связь с двигательным аппаратом левой половины тела, левосторонняя – с правой частью.

В позадицентральной извилине 1 доли полушария содержится ядро анализатора тактильных ощущений и она также связана с противолежащей частью тела.

Клеточные слои

Кора головного мозга осуществляет свои функции посредством нейронов, находящихся в ее толще. Причем количество слоев этих клеток может отличаться в зависимости от участка, габариты которых также разнятся по размеру и топографии. Специалисты выделяют следующие слои коры головного мозга:

  1. Поверхностный молекулярный сформирован в основном из дендритов, с небольшим вкраплением нейронов, отростки которых не покидают границы слоя.
  2. Наружный зернистый состоит из пирамидальных и звездчатых нейронов, отростки которых связывают его со следующим слоем.
  3. Пирамидальный образован пирамидными нейронами, аксоны которых направлены вниз, где обрываются или образуют ассоциативные волокна, а дендриты их соединяют этот слой с предыдущим.
  4. Внутренний зернистый слой сформирован звездчатыми и малыми пирамидальными нейронами, дендриты которых уходят в пирамидальный слой, а также его длинные волокна уходят в верхние слои или спускаются вниз в белое вещество мозга.
  5. Ганглионарный состоит из крупных пирамидальных нейроцитов, их аксоны выходят за пределы коры и связывают различные структуры и отделы ЦНС между собой.

Мультиформный слой сформирован всеми видами нейронов, а их дендриты ориентированы в молекулярный слой, а аксоны пронизывают предыдущие слои или выходят за пределы коры и образуют ассоциативные волокна, образующие связь клеток серого вещества с остальными функциональными центрами головного мозга.

Видео: Кора больших полушарий головного мозга

Кора большого мозга делится на древнюю (archicortex ), старую (paleocortex ) и новую (neocortex ) по филогенетическому признаку, то есть, по порядку возникновения у животных в процессе эволюции. Эти области коры образуют обширные связи в составе лимбической системы. У более филогенетически древних животных древняя и старая кора, как и вся Лимбическая система, отвечали преимущественно за обоняния. У человека Лимбическая система выполняет гораздо более широкие функции, связанные с эмоционально-мотивационной сферой регуляции поведения. В выполнении этих функций участвуют все три области коры.

Древняя кора наряду с другими функциями имеет отношение к обонянию и обеспечению взаимо­действия систем мозга. К древней коре относят обонятельные луковицы, в которые поступают афферентные волокна от обонятельного эпителия слизистой полости носа; обонятельные тракты, расположенные на нижней поверхности лобной доли, обонятельные бугорки, в которых расположены вторичные обонятельные центры. Это филогенетически наиболее ранняя часть коры, занимающая смежные участки лобной и височной долей на нижней и медиальной поверхностях полушарий.

Старая кора включает поясную извилину, гиппокамп и миндалину.

Поясная извилина. Имеет многочисленные связи с корой и стволовыми центрами и выполняет роль главного интегратора различных систем мозга, формирующих эмоции.

Миндалина образует также обширные связи с обонятельной луковицей. Благодаря этим связям обоняние у животных участвует в контроле репродуктивного поведения.

У приматов, в том числе у человека, повреждения миндалины снижают эмоциональную окраску реакций, кроме того, у них полностью исчезают агрессивные аффекты. Электрическая стимуляция миндалины вызывает преимущественно отрицательные эмоции – гнев, ярость, страх. Двустороннее удаление миндалин резко снижает агрессивность животных. Спокойные животные могут, напротив, стать неуправляемо агрессивными. У таких животных нарушается способность оценивать поступающую информацию и соотносить её с эмоциональным поведением. Миндалина участвует в процессе выделения доминирующей эмоции и мотивации и выборе поведения в соответствии с ними. Миндалина – мощнейший модификатор эмоций.

Гиппокамп располагается в медиальной части височной доли. Гиппокамп получает афферентные входы от гиппокампальной извилины (получает входы почти от всех областей неокортекса и других отделов ГМ) , от зрительной, обонятельной и слуховой систем. Повреждение гиппокампа приводит к характерным нарушениям памяти и способности к обучению . Деятельность гиппокампа заключается в консолидации памяти – перехода кратковременной памяти в долговременную. Повреждение гиппокампа вызывает резкое нарушение усвоения новой информации, образования кратковременной и долговременной памяти. Следовательно, гиппокамп, как, впрочем, и другие структуры лимбической системы, существенно влияет на функции неокортекса и на процессы научения. Это влияние осуществляется в первую очередь за счет создания эмоционального фона, который в значительной степени отражается на скорости образования любого условного рефлекса.

К миндалине и гиппокампу идут пути от височной доли коры, передающие информацию от зрительной, слуховой и соматической сенсорных систем. Установлены связи лимбической системы с лобными долями коры переднего мозга.

У новой коры наибольшее развитие величины, диффе­ренциации функций отмечается у человека. Толщина новой коры колеблется от 1,5 до 4,5 мм и максимальна в передней центральной извилине. В лимбической системе и вообще в нервной деятельности кора занимается высшими функциями организации деятельности.

Поражение лобной доли вызывает возникновение эмоциональной тупости, трудности изменения эмоций. Именно при поражении этой области возникает так называемый лобный синдром. Префронтальная область и связанные с ней подкорковые структуры (головка хвостатого ядра, медиодорсальное ядро таламуса) формируют префронтальную систему, отвечающую за сложные когнитивные и поведенческие функции. В орбитофронтальной коре сходятся пути от ассоциативных областей коры, паралимбических областей коры и лимбических областей коры. Таким образом, здесь пересекаются префронтальная система и лимбическая система. Такая организация определяет причастность префронтальной системы к сложным формам поведения, где необходима координация когнитивных, эмоциональных и мотивационных процессов. Целостность ее необходима для оценки текущей обстановки, возможных действий и их последствий и тем самым — для принятия решения и выработки программ поведения.

Удаление височных долей вызывает у обезьян гиперсексуальность, причем их половая активность может быть направлена даже на неодушевленные предметы. Наконец, послеоперационный синдром сопровождается так называемой психической слепотой . Животные утрачивают способность правильной оценки зрительной и слуховой информации, и эта информация никак не связывается с собственным эмоциональным настроем обезьян.

Височные доли тесно связаны со структурами гиппокампа и миндалины и также отвечают за сохранение информации и долговременную память и играют ключевую роль в процессе перевода кратковременной памяти в долговременную. Кора височных долей также отвечает за комбинирование сохраненных в памяти следов.



В продолжение темы:
Аксессуары

(49 слов) В повести Тургенева «Ася» человечность проявил Гагин, когда взял на попечение незаконнорожденную сестру. Он же вызвал друга на откровенную беседу по поводу чувства...

Новые статьи
/
Популярные