Принцип работы электронно-лучевой трубки и ее применение. Устройство и принцип работы электронно-лучевой трубки с

Федеральное агентство по образованию

Кузбасская государственная педагогическая академия

Кафедра автоматизации производственных процессов

Реферат

по радиотехнике

Тема: Осциллографическая электронно-лучевая трубка. Передающие телевизионные трубки

    Электронно-лучевые индикаторы

1.1 Основные параметры ЭЛТ

1.2 Осциллографические электронные трубки

II. Передающие телевизионные трубки

2.1 Передающие телевизионные трубки с накоплением зарядов

2.1.1 Иконоскоп

2.1.2 Супериконоскоп

2.1.3 Ортикон

2.1.4 Суперортикон

2.1.5 Видикон

Список используемой литературы

I . Электронно-лучевые индикаторы

Электронно-лучевым называют электронный электровакуумный прибор, в котором используется поток электронов, сконцентрированный в форме луча или пучка лучей.

Электронно-лучевые приборы, имеющие форму трубки, вытянутой в направлении луча, называют электронно-лучевыми трубками (ЭЛТ). Источником электронов в ЭЛТ подогревный катод. Эмитированные катодом электроны собираются в узкий луч электрическим или магнитным полем специальных электродов или катушек с током. Электронный луч фокусируется на экране, для изготовления которого внутреннюю сторону стеклянного баллона трубки покрывают люминофором – веществом, способным светиться при бомбардировке его электронами. Положением видимого сквозь стекло баллона пятна на экране можно управлять, отклоняя поток электронов путём воздействия на него электрического или магнитного поля специальных (отклоняющих) электродов или катушек с током. Если формирование электронного луча и управление им осуществляется с помощью электростатических полей, то такой прибор называют ЭЛТ с электростатическим управлением. Если для этих целей используют не только электростатические, но и магнитные поля, то прибор называют ЭЛТ с магнитным управлением.

Схематическое изображение электронно-лучевой трубки






Рис.1

На рис.1 схематически показано устройство ЭЛТ. Элементы трубки размещены в стеклянном баллоне, из которого откачан воздух до остаточного давления 1-10 мкПа. Кроме электронной пушки, включающей в себя катод 1, сетку 2 и ускоряющий электрод 3, в электронной лучевой трубке есть магнитная отклоняющая и фокусирующая система 5 и отклоняющие электроды 4, позволяющие направить пучок электронов в различные точки внутренней поверхности экрана 9, имеющего металлическую анодную сетку 8 с проводящим слоем люминофора. Напряжение на сетку анода с люминофором подается через высоковольтный ввод 7. Пучок электронов, падающих с большой скоростью на люминофор, вызывает его свечение, и на экране можно видеть светящееся изображение пучка электронов.

Современные фокусирующие системы обеспечивают диаметр светящегося пятна на экране менее 0,1 мм. Вся система электродов, формирующих электронный луч, крепится на держателях (траверсах) и образует единое устройство, называемое электронам прожектором. Для управления положением светящегося пятна на экране применяют две пары специальных электродов - отклоняющих пластин, расположенных взаимно перпендикулярно. Изменяя разность потенциалов между пластинами каждой пары, можно изменять положение электронного луча во взаимно перпендикулярных плоскостях благодаря воздействию электростатических полей отклоняющих пластин на электроны. Специальные генераторы в осциллографах и телевизорах формируют линейно изменяющееся напряжение, которое подаётся на отклоняющие электроды и создает развертку изображения по вертикали и горизонтали. В результате на экране получают двумерную картину изображения.

ЭЛТ с магнитным управлением содержит такой же электронный прожектор, как и ЭЛТ с электростатическим управлением, за исключением второго анода. Вместо него применяют короткую катушку (фокусирующую) с током, надеваемую на горловину трубки вблизи первого анода. Неоднородное магнитное поле фокусирующей катушки, воздействуя на электроны, выполняет роль второго анода в трубке с электростатической фокусировкой.

Отклоняющая система в трубке с магнитным управлением выполняется в виде двух пар отклоняющих катушек, также размещаемых на горловине трубки между фокусирующей катушкой и экраном. Магнитные поля двух пар катушек взаимно перпендикулярны, что позволяет управлять положением электронного луча при изменении тока в катушках. Магнитные отклоняющие системы используют в трубках с высоким анодным потенциалом, необходимым для получения большой яркости свечения экрана, в частности в телевизионных приемных трубках - кинескопах. Поскольку магнитная отклоняющая система размещается вне баллона ЭЛТ, ее удобно вращать вокруг оси ЭЛТ, меняя положение осей на экране, что важно в некоторых применениях, например в радиолокационных индикаторах. С другой стороны, магнитная отклоняющая система инерционнее электростатической и не позволяет перемещать луч с частотой более 10-20 кГц. Поэтому в осциллографах - приборах, предназначенных для наблюдения на экране ЭЛТ изменений электрических сигналов во времени,- применяют трубки с электростатическим управлением. Заметим, что существуют ЭЛТ с электростатической фокусировкой и магнитным отклонением.

1.1 Основные параметры ЭЛТ

Цвет свечения экрана может быть |различным в зависимости от состава люминофора. Чаще других используют экраны с белым, зеленым, синим, фиолетовым цветом свечения, однако имеются ЭЛТ с желтым, голубым, красным, оранжевым цветом.

Послесвечение - время, необходимое для спадания яркости свечения от номинальной до первоначальной после прекращения электронной бомбардировки экрана. Послесвечение делится на пять групп: от очень короткого (менее 10 -5 с) до очень длительного (более 16 с).

Разрешающая способность - ширина светящейся сфокусированной линии на экране или минимальный диаметр светящегося пятна.

Яркость свечения экрана - сила света, испускаемого 1 м 2 экрана в направлении, нормальном к его поверхности. Чувствительность к отклонению - отношение смещения пятна па экране к значению отклоняющего напряжения или напряженности магнитного поля.

Существуют разные виды ЭЛТ: осциллографические ЭЛТ, приёмные телевизионные трубки, передающие телевизионные трубки и проч. В своей работе я рассмотрю устройство и принцип действия осциллографической ЭЛТ и передающих телевизионных трубок.

1.2 Осциллографические электронно-лучевые трубки

Осциллографические трубки предназначены для получения изображения электрических сигналов на экране. Обычно это ЭЛТ с электростатическим управлением, в которых для наблюдения применяют зеленый цвет свечения экрана, а для фотографирования - голубой или синий. Для наблюдения быстропротекающих периодических процессов служат ЭЛТ с повышенной яркостью свечения и коротким послесвечением (не более 0,01 с). Медленные периодические и однократные быстро протекающие процессы лучше наблюдать на экранах ЭЛТ с длительным послесвечением (0,1-16 с). Осциллографические ЭЛТ выпускаются с круглым и прямоугольным экранами размерами от 14x14 до 254 мм в диаметре. Для одновременного наблюдения двух процессов и более выпускаются многолучевые ЭЛТ, в которых смонтированы два (или более) независимых электронных прожектора с соответствующими отклоняющими системами. Прожекторы смонтированы так, что и оси пересекаются в центре экрана.

II . Передающие телевизионные трубки

Передающие телевизионные трубки и системы преобразуют изображения объектов передачи в электрические сигналы. По способу преобразования изображений объектов передачи в электрические сигналы, передающие телевизионные трубки и системы подразделяются на трубки и системы мгновенного действия и трубки с накоплением зарядов.

В первом случае величина электрического сигнала определяется тем световым потоком, который в данный момент времени падает или на катод фотоэлемента, или на элементарный участок фотокатода передающей телевизионной трубки. Во втором случае происходит преобразование световой энергии в электрические заряды на накопительном элементе (мишени) передающей телевизионной трубки в течении периода кадровой развертки. Распределение электрических зарядов на мишени соответствует распределению света и тени по поверхности передаваемого объекта. Совокупность электрических зарядов на мишени называется потенциальным рельефом. Электронный луч периодически обегает все элементарные участки мишени и списывает потенциальный рельеф. При этом на нагрузочном сопротивлении выделяется напряжение полезного сигнала. Трубки второго типа, т.е. с накопленной световой энергией, имеют больший КПД, чем трубки первого типа, поэтому они широко применяются в телевидении. Именно поэтому подробней я рассмотрю устройство и виды трубок второго типа.

      Передающие телевизионные трубки с накоплением зарядов

        Иконоскоп

Важнейшей частью иконоскопа (рис.1а) является мозаика, которая состоит из тонкого листка слюда толщиной 0,025 мм. На одну сторону слюды нанесено большое число изолированных друг от друга мелких серебряных зёрен 4, окисленных и обработанных в парах цезия.

Пожалуй, нет такого человека, который бы в своей жизни не сталкивался с приборами, в конструкцию которых входит электронно-лучевая трубка (или ЭЛТ). Сейчас подобные решения активно вытесняются своими более современными аналогами на основе жидкокристаллических экранов (ЖК). Однако существует ряд областей, в которых электронно-лучевая трубка по-прежнему является незаменимой. Например, в высокоточных осциллографах ЖК использовать нельзя. Тем не менее, очевидно одно - прогресс устройств отображения информации в конечном итоге приведет к полному отказу от ЭЛТ. Это вопрос времени.

История появления

Первооткрывателем можно считать Ю. Плюккера, который в 1859 году, изучая поведение металлов при различных внешних воздействиях, обнаружил явление излучения (эмиссии) элементарных частиц - электронов. Формируемые пучки частиц получили название катодных лучей. Также он обратил внимание на возникновение видимого свечения некоторых веществ (люминофор) при попадании на них электронных лучей. Современная электронно-лучевая трубка способна создавать изображение именно благодаря этим двум открытиям.

Через 20 лет опытным путем было установлено, что направлением движения излучаемых электронов можно управлять воздействием внешнего магнитного поля. Это легко объяснить, если вспомнить, что перемещающиеся носители отрицательного заряда характеризуются магнитным и электрическим полями.

В 1895 году К. Ф. Браун доработал систему управления в трубке и тем самым сумел менять вектор направленности потока частиц не только полем, но и особым зеркалом, способным вращаться, что открыло совершенно новые перспективы использования изобретения. В 1903 году Венельт разместил внутри трубки катод-электрод в виде цилиндра, что дало возможность управлять интенсивностью излучаемого потока.

В 1905 году Эйнштейн сформулировал уравнения расчета фотоэффекта и через 6 лет было продемонстрировано работающее устройство передачи изображений на расстояния. Управление лучом осуществлялось а за величину яркости отвечал конденсатор.

Во время начала производства первых моделей ЭЛТ промышленность была не готова создавать экраны с большим размером диагонали, поэтому в качестве компромисса применялись увеличительные линзы.

Устройство электронно-лучевой трубки

С тех пор устройство было доработано, однако изменения носят эволюционный характер, так как ничего принципиально нового в ход работы добавлено не было.

Стеклянный корпус начинается трубкой с конусообразным расширением, образующим экран. В устройствах цветного изображения внутренняя поверхность с определенным шагом покрыта тремя видами люминофора дающими свой цвет свечения при попадании пучка электронов. Соответственно, есть три катода (пушки). Для того чтобы отсеять расфокусировавшиеся электроны и обеспечить точное попадание нужного луча в нужную точку экрана, между катодной системой и слоем люминофора размещают стальную решетку - маску. Ее можно сравнить с трафаретом, отсекающим все лишнее.

С поверхности подогреваемых катодов начинается эмиссия электронов. Они устремляются в сторону анода (электрод, с положительным зарядом), подключенного к конусной части трубки. Далее пучки фокусируются специальной катушкой и попадают в поле отклоняющей системы. Проходя через решетку, падают на нужные точки экрана, вызывая преобразование своей в свечение.

Вычислительная техника

Мониторы с электронно-лучевой трубкой нашли широкое применение в составе компьютерных систем. Простота конструкции, высокая надежность, точная цветопередача и отсутствие задержек (тех самых миллисекунд реакции матрицы в ЖК) - вот их основные преимущества. Однако в последнее время, как уже указывалось, ЭЛТ вытесняется более экономными и эргономичными ЖК-мониторами.

Электронно-лучевая трубка, изобретенная еще в 1897 г., является электронно-вакуумным прибором, который имеет много общего с обычной электронной лампой. Внешне трубка представляет собой стеклянную колбу с удлиненной горловиной и плоской торцовой частью— экраном.

Внутри колбы и горловины, так же как и внутри баллона электронной лампы, располагаются электроды, выводы которых, так же как и у лампы, подпаяны к ножкам цоколя.

Основное назначение электронно-лучевой трубки — образование видимого изображения с помощью электрических сигналов. Подводя к электродам трубки соответствующие напряжения, можно рисовать на ее экране графики переменных напряжения и токов, характеристики различных радиоустройств, а также получать движущиеся изображения, подобным тем, которые мы видим на экране кино.

Рис. 1. Чудесный карандаш.

Все это делает электронно-лучевую трубку незаменимой частью телевизоров, радиолокаторов, многих измерительных и вычислительных приборов.

Какой же «быстрый карандаш» успевает зарисовывать на экране электроннолучевой трубки импульсы тока, которые длятся миллионные доли секунды? Каким образом удается подбирать тона сложного рисунка? Как можно мгновенно «стирать» с экрана одно изображение и с такой же быстротой создать другое? (рис. 1).

Люминесцирующий экран к электронный луч. В основе работы электронно-лучевой трубки лежит способность некоторых веществ (виллемит, сернистый цинк, алюминат цинка:) светиться (люминесцировать) под действием электронной бомбардировки.

Если таким люминесцирующим веществом покрыть изнутри анод обычной электронной лампы, то он будет ярко светиться за счет бомбардировки электронами, образующими анодный ток. Между прочим, такой люминесцирующий анод используется в одной из специальных электронных ламп — оптическом индикаторе настройки 6Е5С. Люминесцирующим составом покрывают изнутри утолщенный торец колбы, образуя таким образам люминесцирующий экран электронно-лучевой трубки. С помощью специального устройства —«электронной пушки»— из горловины трубки на экран направляютузкий пучок электродов —«электронный луч».

Рис. 2. Экран светится под действием пучка электронов.

В том месте, где электроны ударяются о люминесцирующий слой, на экране образуется светящаяся точка, которая отлично видна (с торца) снаружи трубки сквозь стекло. Чем большее количество электронов образует луч и чем с большей скоростью эти электроны движутся, тем ярче светящаяся точка на люминесцирующем экране.

Если электронный луч перемещать в пространстве, то и светящаяся точка также будет двигаться по экрану, причем если перемещение луча происходит достаточно быстро, то наш глаз вместо движущейся точки увидит на экране сплошные светящиеся линии (рис. 2).

Если электронным лучом быстро прочертить весь экран строка за строкой и при этом соответствующим образом менять ток луча (т. е. яркость светящейся точки), то на экране можно будет получить сложную и достаточно четкую картину.

Таким образом, изображение на люминесцирующем экране трубки получается с помощью остро направленного пучка электронов и поэтому, так же как и в электронной лампе, основные процессы в трубке связаны с получением и упорядоченным движением свободных электронов в вакууме.

Электронно-лучевая трубка и триод

Электроннолучевая трубка во многом напоминает усилительную лампу — триод. Так же как и в лампе, в трубке имеется катод, испускающий электроны, необходимые для образования электронного луча. От катода трубки электроны движутся к экрану, который, так же как и анод триода, имеет высокий положительный потенциал относительно катода.

Рис. 3. Возникновение вторичных электронов

Однако подача положительного напряжения непосредственно «а экран затруднена, так как люминесцирующее вещество является полупроводником. Поэтому положительные напряжения на экране приходится создавать косвенным путем. Колбу изнутри покрывают слоем графита, на который и подают положительное напряжение. Электроны, образующие луч, с силой ударяя в люминесцирующее вещество, «выбивают» из него так называемые «вторичные» электроны, которые упорядоченно движутся к графитовому покрытию под действием положительного напряжения на нем (рис. 3).

В первый момент число вторичных электронов, покидающих экран, намного превышает число попадающих в него электронов луча. Это приводит к тому, что в атомах люминесцирующего вещества образуется нехватка электронов, т. е. экран приобретает положительный потенциал. Равновесие между числом попадающих на экран электронов и числом выбиваемых из него вторичных электронов установится лишь тогда, когда напряжение на экране трубки окажется близким к напряжению на графитовом покрытии. Таким образом, ток в электронно-лучевой трубке замыкается по пути катод — экран — графитовое покрытие, а следовательно, именно графитовое покрытие играет роль анода, хотя электроды, вылетевшие из катода, непосредственно на него не попадают.

Вблизи катода трубки располагается управляющий электрод (модулятор), который играет ту же роль, что и управляющая сетка триода. Меняя напряжение на управляющем электроде, можно изменять величину тока луча, что в свою очередь приведет к изменению яркости светящейся на экране точки.

Однако наряду со сходством между усилительной электронной лампой и электронно-лучевой трубкой в работе последней имеются особенности, принципиально отличающие ее от триода.

Во-первых, электроны движутся от катода к экрану трубки узким пучком, в то время как к аноду лампы они движутся «широким фронтом».

Во-вторых, для того чтобы, передвигая светящуюся точку по экрану, создавать на нем изображение, необходимо изменять направление движения летящих к экрану электронов и, таким образом, перемещать электронный луч в пространстве.

Из всего этого следует, что важнейшими процессами, отличающими трубку от триода, являются образование тонкого электронного луча и отклонение этого луча в разные стороны.

Образование и фокусировка электронного луча

Образование электронного луча начинается уже около катода электронно-лучевой трубки, который состоит из маленького никелевого цилиндра с колпачком, покрытым эмиттирующим (хорошо испускающим электроны при нагревании) материалом. Внутри цилиндра помещается изолированная проволока — подогреватель. Благодаря такой конструкции катода электроны излучаются со значительно меньшей поверхности, чем в обычной электронной лампе. Это сразу создает некоторую направленность пучка летящих от катода электронов.

Катод электронно-лучевой трубки помещен в тепловой экран — металлический цилиндр, торцовая часть которого, направленная в сторону колбы, открыта. Благодаря этому электроны движутся от катода не во все стороны, как это имеет место в лампе, а только в направлении люминесцирующето экрана. Однако, несмотря на специальную конструкцию катода и тепловой экран, поток движущихся электронов остается чрезмерно широким.

Резкое сужение потока электронов осуществляется управляющим электродом, который хотя и выполняет роль управляющей сетки, конструктивно ничего общего с сеткой не имеет. Управляющий электрод выполнен в виде накрывающего катод цилиндра, в торцовой части которого сделано круглое отверстие диаметром в несколько десятых долей миллиметра.

На управляющий электрод подают значительное (несколько десятков вольт) отрицательное смещение, благодаря чему он отталкивает электроны, обладающие, как известно, отрицательным зарядом. Под действием отрицательного напряжения траектории (пути движения) электронов, проходящих сквозь узкое отверстие в управляющем электроде, «сжимаются» к центру этого отверстия и таким образом образуется довольно тонкий электронный луч.

Однако для нормальной работы трубки нужно не только создать электронный луч, но и произвести его фокусировку, т. е. добиться того, чтобы траектории всех электронов луча сходились на экране в одной точке. Если фокусировки луча не производить, то на экране вместо светящейся точки появится довольно большое светящееся пятно и вследствие этого изображение окажется расплывчатым или, как говорят фотолюбители, «нерезким».

Рис. 4. Электронная пушка и ее оптическая аналогия.

Фокусировка луча осуществляется электронной оптической системой, которая действует на движущиеся электроны так же, как и обычная оптика на световые лучи. Электронная оптическая система образуется электростатическими линзами (статическая фокусировка) либо электромагнитными линзами (магнитная фокусировка), конечный результат действия которых одинаков.

Электростатическая линза — это не что иное (рис. 4,а), как образованное с помощью специальных электродов электрическое поле, под действием которого искривляются траектории электронов луча. В трубке со статической фокусировкой (рис. 4,б) обычно имеются две линзы, для образования которых используют уже известный нам управляющий электрод, а также два специальных электрода: первый и второй аноды. Оба эти электрода представляют собой металлические цилиндры, иногда разных диаметров, на которые подают большое положительное (относительно катода) напряжение: на первый анод — обычно 200—500 в, на второй — 800—15 000 в.

Первая линза образуется между управляющим электродом и первым анодом. Ее оптическим аналогом является короткофокусная собирающая линза, состоящая из двух элементов: двояковыпуклой и двояковогнутой линз. Эта линза дает внутри первого анода изображение катода, в свою очередь проектируемого на экран трубки с помощью второй линзы.

Вторая линза образуется полем между первым и вторым анодами и аналогична первой линзе, за исключением того, что ее фокусное расстояние значительно больше. Таким образом, первая линза играет роль конденсора, а вторая линза — главной проекционной линзы.

Внутри анодов располагают тонкие металлические пластины с отверстиями в центре — диафрагмы, которые улучшают фокусирующие свойства линз.

Изменяя напряжение на любом из трех образующих электростатические линзы электродов, можно менять свойства линз, добиваясь хорошей фокусировки луча. Обычно это делают путем изменения напряжения на первом аноде.

Несколько слов о названиях электродов «первый анод» и «второй анод». Раньше мы установили, что роль анода в электронно-лучевой трубке играет графитовое покрытие вблизи экрана. Однако первый « второй аноды, в основном предназначенные для фокусировки луча, благодаря наличию на них большого положительного напряжения ускоряют электроны, т. е. делают то же, что и анод усилительной лампы. Поэтому названия этих электродов можно считать оправданными, тем более что на них попадает некоторая часть вылетающих из катода электронов.

Рис. 5. Трубка с магнитной фокусировкой. 1 —управляющий электрод; 2—первый анод; 3—фокусирующая катушка; 4—графитовое покрытие; 5—-люминесцирующий экран; 6—колба.

В электронно-лучевых трубках с магнитной фокусировкой (рис. 5) второй анод отсутствует. Роль собирающей линзы в этой трубке играет магнитное поле. Это поле образуется охватывающей горловину трубки катушкой, по которой пропускают постоянный ток. Магнитное поле катушки создает вращательное движение электронов. В то же время электроны с большой скоростью движутся параллельно оси трубки к люминесцирующему экрану под действием положительного напряжения на нем. В результате этого траектории электронов представляют собой кривую, «напоминающую винтовую линию.

По мере приближения к экрану скорость поступательного движения электронов возрастает, а действие магнитного поля ослабляется. Поэтому радиус кривой постепенно уменьшается и вблизи экрана пучок электронов вытягивается в тонкий прямой луч. Хорошей фокусировки, как правило, добиваются путем изменения тока в фокусирующей катушке, т. е. путем изменения напряженности магнитного поля.

Всю систему для образования электронного луча в трубках часто называют «электронной пушкой» или «электронным прожектором».

Отклонение электронного луча

Отклонение электронного луча, так же как и его фокусировка, осуществляется с помощью электрических полей (электростатическое отклонение) либо с помощью магнитных полей (магнитное отклонение).

В трубках с электростатическим (рис. 6,а) отклонением электронный луч, прежде чем попасть на экран, проходит между четырьмя плоскими металлическими пластинами-электродами, которые получили название отклоняющих пластин.

Рис. 6. Управление лучом при помощи. а—электростатического и б—магнитного полей.

На экран электронно-лучевой трубки люминофоры наносятся в виде крошечных точек, причем эти точки собираются по три; в каждой тройке, или триаде, имеются одна красная, одна синяя и одна зеленая точки. На рисунке я вам показал несколько таких триад. Всего на экране трубки имеется около 500 тысяч триад. Картина, которую вы видите в телевизоре, вся состоит из светящихся точек. Там, где детали изображения более светлые, на точки попадает больше электронов, и они светятся ярче. На темные места изображения электронов попадает, соответственно, меньше. Если в цветном изображении имеется белая деталь, то повсюду в пределах этой детали все три точки в каждой триаде светятся с одинаковой яркостью. Наоборот, если в цветном изображении имеется деталь красного цвета, то повсюду в пределах этой детали светятся только красные точки каждой триады, а зеленые и синие не светятся совсем.

Вы поняли, что значит создать цветное изображение на экране телевизора? Это, во-первых, заставить электроны попадать в нужные места, то есть на те люминофорные точки, которые должны светиться, и не попадать в другие места, то есть на те точки, которые светиться не должны. Во-вторых, электроны должны попадать в нужные места в нужное время. Ведь изображение на экране постоянно меняется, и там, где в какой-то момент, например, было ярко-оранжевое пятно, через мгновение должно появиться, скажем, темно-фиолетовое. Наконец, в-третьих, в нужное место и в нужное время должно попадать нужное количество электронов. Больше - туда, где свечение должно быть ярче, и меньше - туда, где свечение темнее.

Поскольку на экране размещается почти полтора миллиона люминофорных точек, задача на первый взгляд представляется исключительно сложной. На самом деле - ничего сложного. Прежде всего в электронно-лучевой трубке имеется не один, а три отдельных нагретых катода. Точно таких, как в обычной электронной лампе. Каждый катод испускает электроны, и вокруг него создается электронное облачко. Около каждого катода находятся сетка и анод. Количество электронов, прошедших сквозь сетку к аноду, зависит от напряжения на сетке. Пока все происходит, как в обычной трехэлектродной лампе - триоде.

Какое отличие? Анод здесь не сплошной, а с отверстием в самом центре. Поэтому большинство электронов, движущихся от катода к аноду, не задерживается на аноде - они вылетают через отверстие наружу в виде круглого пучка. Конструкция, состоящая из катода, сетки и анода, так и называется: электронная пушка. Пушка как бы выстреливает пучком электронов, а количество электронов в пучке зависит от напряжения на сетке.

Нацелены электронные пушки так, чтобы пучок, вылетающий из первой пушки, всегда попадал только в красные точки триад, пучок из второй пушки - только в зеленые точки, а пучок из третьей пушки - только в синие точки. Таким образом решается одна из трех задач по образованию цветного изображения. Подавая нужные напряжения на сетки каждой из трех пушек, устанавливают нужные интенсивности красного, зеленого и синего свечения, а значит, обеспечивают нужную окраску каждой детали изображения.

Любите ли вы телевидение так, как не люблю его я?

Телевизор - это вообще - отвратительная штука. Чем просиживать часами перед "голубым экраном", куда полезнее вести здоровый образ жизни: не спеша, с чашкой кофэ - за компьютером…

Тем не менее, вещи, которые я буду рассказывать в этом цикле статей, могут вполне пригодиться в нашей с вами практической деятельности.

Итак, сейчас мы разберемся, как же происходит передача видеосигнала. Рассматривать мы будем родную до боли систему SECAM, потому что в нашей стране (а именно - Российской Федерации) официально принята именно эта система телевидения. Впрочем - обо всем по порядку.

Как работает телевизор?

Телевизор работает по 24 часа в сутки 7 дней в неделю. Это понятно.
У него есть экран - 1шт и динамик - от 1 до бесконечности, в зависимости от "навороченности" агрегата. Еще у него есть антенна и пульт управления. Но нас сейчас интересует только экран. А переводя с языка домохозяек на язык мудрых котов - кинескоп (электронно-лучевая трубка - ЭЛТ).

Я прекрасно понимаю, что в наш век плазмы и жидкого кристалла, электронно-лучевой кинескоп кажется кому-то пережитком старины. Однако, понять принцип работы телевизора, проще всего именно разбираясь с ЭЛТ.

Электронно-лучевая трубка

Шо це таке. Причем здесь электроны? Причем здесь лучи?

Дело в том, что картинка на экране рисуется при помощи электронного луча. Электронный луч очень похож на световой. Но световой луч состоит из фотонов, а электронный - из электронов, и мы его увидеть не можем. Куча электронов несется с бешеной скоростью по прямой от пункта А - к пункту Б. Так образуется "луч".

Пункт Б - это анод. Он находится прямо на обратной стороне экрана. Также, экран (с обратной стороны) вымазан специальным веществом - люминофором. При столкновении электрона на бешеной скорости с люминофором, последний испускает видимый свет. Чем быстрее летел электрон до столкновения - тем свет будет ярче. То есть, люминофор - это преобразователь "света" электронного луча в свет, видимый для человеческого глаза.

С пунктом Б разобрались. А что же такое пункт "А"? А - это "электронная пушка ". Название страшное. Но страшного в ней ничего нет. Она не предназначена для того, чтобы жестоко расстреливать пришельцев с Марса. Но "стрелять" она все же умеет - электронным лучем в экран.

Как это все устроено?

Вообще, ЭЛТ - это такая большая электронная лампа. Как? Вы не знаете что такое лампа? Ну ладно…

Электронные лампы - это такие же усилительные элементы как и любимые всеми нами транзисторы. Но лампы появились намного раньше их кремниевых "коллег", еще в первой половине прошлого века.

Лампа - это такой стеклянный баллон, из которого откачан воздух.
В самой простой лампе - 4 вывода: катод, анод и два вывода нити накала. Нить накала нужна для того, чтобы разогреть катод. А разогреть катод нужно для того, чтобы с него полетели электроны. А электроны должны полететь затем, чтоб возник электрический ток через лампу. Для этого обычно на нить накала подается напряжение - 6,3 или 12,6 В (в зависимости от типа лампы)

Кроме того, чтобы полетели электроны - нужно высокое напряжение между катодом и анодом. Оно зависит от расстояния между электродами и от мощности лампы. В обычных радиолампах это напряжение составляет несколько сотен вольт, расстояния от катода до анода в таких лампах не превышают нескольких миллиметров.
В кинескопе расстояние от катода, находящегося в электронной пушке до экрана может превышать несколько десятков сантиметров. Соответственно, и напряжение там нужно намного большее - 15…30 кВ .

Такие зверские напряжения создает специальный повышающий трансформатор. Его еще называют строчный трансформатор, поскольку он работает на строчной частоте. Но, об этом - чуть позже.

При ударении электрона об экран, кроме видимого света, "вышибаются" также и другие излучения. В частности - радиоактивное. Вот почему не рекомендуется смотреть телек ближе 1…2 метров от экрана.

Итак, луч получили. И он так красивенько светит аккурат в центр экрана. Но нам-то надо, чтоб он "чертил" по экрану линии. То есть, нужно заставить его отклоняться от центра. И в этом вам помогут… электромагниты. Дело в том, что электронный луч, в отличие от светового, очень чувствителен к магнитному полю. Поэтому то он и используется в ЭЛТ.

Нужно поставить две пары отклоняющих катушек. Одна пара будет отклонять по горизонтали, другая - по вертикали. Умело управляя ими, можно гонять луч по экрану куда угодно.

А куда угодно?

Вот отсюда мы и начинаем нашу повесть о строчках точках и крючочках…

Повесть о Строчках, Точках и Крючочках

Картинка на экране телевизора образуется в результате того, что луч с бешенной скоростью чертит слева-направо сверху-вниз по экрану. Такой метод последовательной прорисовки изображения называется "развертка ".

Поскольку развертка происходит очень быстро - для глаза все точки сливаются в строчки а строчки - в единый кадр.

В системах PAL и SECAM за одну секунду луч успевает пробежать весь экран 50 раз.
В американской системе NTSC - еще больше - аж 60 раз! Вообще говоря, системы PAL и SECAM отличаются лишь в передаче цвета. Все остальное у них - одинаково.

Картинка образуется за счет того, что во время "бега", луч изменяет свою яркость в соответствии с принимаемым видеосигналом. Как происходит управление яркостью?

А очень просто! Дело в том, что кроме рассмотренных электродов - анода и катода , в лампах бывает еще третий электрод - сетка . Сетка - это управляющий электрод. подавая на сетку сравнительно низкое напряжение, можно управлять током, протекающим через лампу. Иными словами, можно управлять интенсивностью потока электронов, "летящих" от катода к аноду.

В ЭЛТ сетка используется для изменения яркости луча.

Подавая на сетку отрицательное напряжение (относительно катода), можно ослабить интенсивность потока электронов в луче, или вообще закрыть "дорогу" для электронов. Это бывает нужно, например, при перемещении луча от конца одной строки к началу другой.

Теперь поговорим поподробнее именно про принципы развертки.
Для начала, стоит запомнить несколько несложных чисел и терминов:

Растр - это одна "строчка", которую рисует луч на экране.
Поле - это все строчки, которые нарисовал луч за один вертикальный проход.
Кадр - это элементарная единица видеоряда. Каждый кадр состоит из двух полей - четного и нечетного.

Это стоит пояснить: изображение на экране телевизора разворачивается с частотой 50 полей в секунду. Однако, телевизионный стандарт равен 25 кадрам в секунду. Поэтому один кадр при передаче разбивается на два поля - четное и нечетное. В четном поле содержатся только четные строчки кадра (2,4,6,8…), в нечетном - только нечетные. Изображение на экране также "рисуется" через строку. Такая развертка называется " чересстрочная развертка ".

Бывает еще "прогрессивная развертка " - когда весь кадр развертывается за один вертикальный ход луча. Она используется в компьютерных мониторах.

Итак, теперь сухие числа. Все приведенные числа справедливы для систем PAL и SECAM.

Кол-во полей в секунде - 50
Кол-во строк в кадре - 625
Количество эффективных строк в кадре - 576
Количество эффективных точек в строке - 720

А эти числа выводятся из вышеприведенных:

Кол-во строк в поле - 312,5
Строчная частота - 15625 Гц
Длительность одной строки - 64 мкС (вместе с обратным ходом луча)



В продолжение темы:
Детская мода

Немногие понимают, какую силу они имеют в своих руках. Бывают моменты, когда собственные руки могут спасти или буквально предать, и все это происходит без вашего осознанного...

Новые статьи
/
Популярные