Продюсер глюкозы. Певица Глюкоза: биография, личная жизнь, семья, муж, дети — фото. Карьера певицы Глюкозы

Нитросоединения. Амины

Очень важны в народном хозяйстве азотсодержащие органические вещества. Азот может входить в органические соединения в виде нитрогруппы NO 2 , аминогруппы NH 2 и амидогруппы (пептидной группы) – C(O)NH, причем всегда атом азота будет непосредственно связан с атомом углерода.

Нитросоединения получают при прямом нитровании предельных углеводородов азотной кислотой (давление, температура) или при нитровании ароматических углеводородов азотной кислотой в присутствии серной кислоты, например:

Низшие нитроалканы (бесцветные жидкости) используются как растворители пластмасс, целлюлозного волокна, многих лаков, низшие нитроарены (желтые жидкости) – как полупродукты для синтеза аминосоединений.

Амины (или аминосоединения) можно рассматривать как органические производные аммиака. Амины могут быть первичными R – NH 2 , вторичными RR"NH и третичными RR"R" N, в зависимости от числа атомов водорода, которые замещены на радикалы R, R", R". Например, первичный амин – этиламин C 2 H 5 NH 2 , вторичный амин – дижетиламин (CH 3) 2 NH, третичный амин – триэтиламин (C 2 H 5) 3 N.

Амины, как и аммиак, проявляют основные свойства, они в водном растворе гидратируются и диссоциируют как слабые основания:

а с кислотами образуют соли:

Третичные амины присоединяют галогенпроизводные с образованием солей четырехзамещенного аммония:

Ароматические ажины (в которых аминогруппа связана непосредственно с бензольным кольцом) являются более слабыми основаниями, чем алкиламины, из‑за взаимодействия неподеленной пары электронов атома азота с π‑электронами бензольного кольца. Аминогруппа облегчает замещение водорода в бензольном кольце, например на бром; из анилина образуется 2,4,6‑триброманилин:

Получение: восстановление нитросоединений с помощью атомарного водорода (получают либо непосредственно в сосуде по реакции Fe + 2НCl = FeCl 2 + 2Н 0 , либо при пропускании водорода Н 2 над никелевым катализатором Н 2 = 2Н 0) приводит к синтезу первичных аминов:

б) реакция Зинина

Амины используются в производстве растворителей для полимеров, лекарственных препаратов, кормовых добавок, удобрений, красителей. Очень ядовиты, особенно анилин (желто‑коричневая жидкость, всасывается в организм даже через кожу).

Аминокислоты. Белки

Аминокислоты – органические соединения, содержащие в своем составе две функциональные группы – кислотную СООН и аминную NH 2 ; являются основой белковых веществ.

Примеры:

Аминокислоты проявляют свойства и кислот, и аминов. Так, они образуют соли (за счет кислотных свойств карбоксильной группы):

и сложные эфиры (подобно другим органическим кислотам):

С более сильными (неорганическими) кислотами они проявляют свойства оснований и образуют соли за счет основных свойств аминогруппы:

Реакцию образования глицинатов и солей глициния можно объяснить следующим образом. В водном растворе аминокислоты существуют в трех формах (на примере глицина):

Поэтому глицин в реакции со щелочами переходит в глицинат‑ион, а с кислотами – в катион глициния, равновесие смещается соответственно в сторону образования анионов или катионов.

Белки – органические природные соединения; представляют собой биополимеры, построенные из остатков аминокислот. В молекулах белков азот присутствует в виде амидогруппы – С(О) – NH– (так называемая пептидная связь С – N). Белки обязательно содержат С, Н, N, О, почти всегда S, часто Р и др.

При гидролизе белков получают смесь аминокислот, например:

По числу остатков аминокислот в молекуле белка различают дипептиды (приведенный выше глицилаланин), трипептиды и т. д. Природные белки (протеины) содержат от 100 до 1 10 5 остатков аминокислот, что отвечает относительной молекулярной массе 1 10 4 – 1 10 7 .

Образование макромолекул протеинов (биополимеров), т. е. связывание молекул аминокислот в длинные цепи, происходит при участии группы СООН одной молекулы и группы NH 2 другой молекулы:

Физиологическое значение белков трудно переоценить, не случайно их называют «носителями жизни». Белки – основной материал, из которого построен живой организм, т. е. протоплазма каждой живой клетки.

При биологическом синтезе белка в полипептидную цепь включаются остатки 20 аминокислот (в порядке, задаваемом генетическим кодом организма). Среди них есть и такие, которые не синтезируются вообще (или синтезируются в недостаточном количестве) самим организмом, они называются незаменимыми аминокислотами и вводятся в организм вместе с пищей. Пищевая ценность белков различна; животные белки, имеющие более высокое содержание незаменимых аминокислот, считаются для человека более важными, чем растительные белки.

Используя данный видеоурок, все желающие смогут получить представление о теме "Азотсодержащие органические соединения". При помощи этого видеоматериала вы узнаете об органических соединениях, имеющих в своём составе азот. Учитель расскажет об азотосодержащих органических соединениях, их составе и свойствах.

Тема: Органические вещества

Урок: Азотсодержащие органические соединения

В большинстве природных органических соединений азот входит в состав NH 2 - аминогруппы. Органические вещества, молекулы которых содержат аминогруппу , называются аминами. Строение молекул аминов аналогично строению аммиака, и поэтому свойства этих веществ сходны.

Аминами называют производные аммиака, в молекулах которого один или несколько атомов водорода замещены углеводородными радикалами. Общая формула аминов - R - NH 2.

Рис. 1. Шаростержневые модели молекулы метиламина ()

Если замещен один атом водорода, то образуется первичный амин. Например, метиламин

(см. Рис. 1).

Если замещены 2 атома водорода, то образуется вторичный амин. Например, диметиламин

При замещении всех 3 атомов водорода в аммиаке, образуется третичный амин. Например, триметиламин

Разнообразие аминов определяется не только числом замещенных атомов водорода, но и составом углеводородных радикалов. С n Н 2 n +1 - N Н 2 - это общая формула первичных аминов.

Свойства аминов

Метиламин, диметиламин, триметиламин - это газы с неприятным запахом. Говорят, что они обладают запахом рыбы. Благодаря наличию водородной связи, они хорошо растворяются в воде, спирте, ацетоне. Из-за водородной связи в молекуле метиламина наблюдается и большое различие в температурах кипения метиламина (t кип.= -6,3 ° С) и соответствующего углеводорода метана CH 4 (t кип.= -161,5 ° С). Остальные амины являются жидкими или твердыми, при нормальных условиях, веществами, обладающие неприятным запахом. Только высшие амины практически не имеют запаха. Способность аминов вступать в реакции, подобные аммиаку, обусловлена также наличием в их молекуле «неподеленной» пары электронов (см. Рис. 2).

Рис. 2. Наличие у азота «неподеленной» пары электронов

Взаимодействие с водой

Щелочную среду в водном растворе метиламина можно обнаружить с помощью индикатора. Метиламин СН 3 - N Н 2 - тоже основание, но иного типа. Его основные свойства обусловлены способностью молекул присоединять катионы H + .

Суммарная схема взаимодействия метиламина с водой:

СН 3 - N Н 2 + Н-ОН → СН 3 - N Н 3 + + ОН -

МЕТИЛАМИН ИОН МЕТИЛ АММОНИЯ

Взаимодействие с кислотами

Подобно аммиаку, амины взаимодействуют с кислотами. При этом образуются твердые солеподобные вещества.

С 2 Н 5 - N Н 2 + НС l → С 2 Н 5 - N Н 3 + + С l -

ЭТИЛАМИН ХЛОРИД ЭТИЛ АММОНИЯ

Хлорид этиламмония хорошо растворяется в воде. Раствор этого вещества проводит электрический ток. При взаимодействии хлорида этиламмония со щелочью образуется этиламин.

С 2 Н 5 - N Н 3 + С l - + N аОН → С 2 Н 5 - N Н 2 + N аС l + Н 2 О

При горении аминов образуются не только оксиды углерода и вода, но и молекулярный азот .

4СН 3 - N Н 2 + 9О 2 → 4 СО 2 + 10 Н 2 О + 2 N 2

Смеси метиламина с воздухом взрывоопасны.

Низшие амины используют для синтеза лекарственных средств, пестицидов, а также при производстве пластмасс. Метиламин - токсичное соединение. Он раздражает слизистые оболочки, угнетает дыхание, отрицательно действует на нервную систему, внутренние органы.

Подведение итога урока

Вы узнали еще один класс органических веществ - амины. Амины относятся к азотсодержащим органическим соединениям. Функциональная группа аминов - NН 2 , называемая аминогруппой. Амины можно рассматривать как производные аммиака, в молекулах которого один или несколько атомов водорода замещены на углеводородный радикал. Рассмотрели химические и физические свойства аминов.

1. Рудзитис Г.Е. Неорганическая и органическая химия. 9 класс: Учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, 2009.

2. Попель П.П. Химия. 9 класс: Учебник для общеобразовательных учебных заведений / П.П. Попель, Л.С. Кривля. - К.: ИЦ «Академия», 2009. - 248 с.: ил.

3. Габриелян О.С. Химия. 9 класс: Учебник. - М.: Дрофа, 2001. - 224 с.

1. Рудзитис Г.Е. Неорганическая и органическая химия. 9 класс: Учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, 2009. - №№ 13-15 (с. 173).

2. Вычислите массовую долю азота в метиламине.

3. Напишите реакцию горения пропиламина. Укажите сумму коэффициентов продуктов реакции.

Соединения, содержащие в структуре своих молекул атомы азота, широко распространены в природе (белковые вещества, физиологически активные соединения, полимерные материалы и т.д.). К наиболее простым относятся:

а) нитрозосоединения

б) нитросоединения

в
) амины:

г) диазосоединения

д) азосоединения

ж) нитрилы

з) аминоспирты, аминокислоты, аминосахара и т.д.

Нитросоединения

Нитросоединения – вещества, содержащие в своем составе нитрогруппу –NO 2 (может быть одна или несколько). В зависимоси от углеводоодного радикала различают алифатические (насыщенные и ненасыщенные), ациклические, ароматические, гетероциклические. По типу углерода, с которым связана нитрогруппа – первичные, вторичные, третичные нитросоединения.

Стронение нитрогруппы отличается рядом особенностей, которые влияют на физические и химические свойства нитросоединений. Установлено, что оба атома кислорода в нитрогруппе абсолютно равноценны и строение нитрогруппы может быть изображено в виде:

т.е электронная плотность распределена равномерно

При названии нитросоединений к названию соответствующего углеводорода добавляется приставка нитро-:

Изомерия связана со строением углеводородного радикала и положением нитрогруппы.

СПОСОБЫ ПОЛУЧЕНИЯ

1. Нитрование алканов (реакция Коновалова)

2. Нитрование аренов

3. Алкилирование нитритов галогенопроизводными

4. Окисление первичных ароматических аминов перкислотами

Физические свойства

Нитросоединения алифатические – высококипящие жидкости с приятным запахом, плохо или совсем не растворимые в воде. Начиная с С 4 – ρ>1. Ароматические нитросоединения – жидкости или твердые вещества, имеющие запах горького миндаля, ядовиты. Из-за наличия семиполярной связи в молекулах нитросоединения обладают повышенной полярностью, высокими t кип. и t пл. , большим электрическим дипольным моментом. При накоплении в молекуле нитрогрупп полинитросоединения становятся взрывчатыми.

ХИМИЧЕСКИЕ СВОЙСТВА

Химические свойства обусловлены наличием нитрогруппы, строением углеводородного радикала и влиянием их друг на друга.

1. Восстановление. Проводится в кислой, щелочной либо нейтральной среде до образования первичных аминов. В зависимости от условий и характера восстановителя образуются различные промежуточные продукты.

1.1. Восстановление в кислой среде Fe или Sn. Промежуточные продукты выделить не удается:

1.2. Восстановление в нейтральной среде осуществляется Zn. Можно остановить реакцию и выделить фенилгидроксиламин (стадии 1, 2, 3).

1.3. Восстановление в щелочной среде позволяет выделить промежуточно образующиеся азоксибензол, азобензол и гидразобензол:

Любые продукты реакции восстановления можно получить электрохимическим путем, подобрав соответствующий режим электролиза.

2. Окислительно-восстановительные реакции . Так как нитрогруппа обладает достаточно сильным окислительным действием, которое может проявляться внутримолекулярно при подборе соответствующих условий. При этом атом азота – восстанавливается, а соседний с ним атом углерода – окисляется.

Первичные нитросоединения под действием концентрированных минеральных кислот при нагревании образуют карбоновую кислоту и гидроксиламин:

Под действием разбавленных минеральных кислот из первичных аминов образуются альдегиды, из вторичных – кетоны (реакция Нефа):

В ароматических аминах окисляется углеводородная цепочка (если такая имеется), находящаяся в о -положении по отношению к нитрогруппе:

3. Действие щелочей (таутомерия нитросоединений). Реакция протекает только для первичных и вторичных нитросоединений (третичные со щелочами не реагируют). Так как группа –NO 2 обладает сильными акцепторными свойствами, водород в α-положении по отношению к ней обладает повышенной подвижностью. Поэтому нитросоединения могут медленно растворяться в щелочах с образованием соли аци-формы, которая при дальнейшем подкислении переходит в аци-нитроформу (нитроновую кислоту), а последняя – в нитроформу. Такой переход форм друг в друга называется таутомерным.

4. Действие азотистой кислоты . Позволяет различить первичные и вторичные нитросоединения (третичные – не реагируют). Реакция также обусловлена подвижностью водорода в α-положении. Первичные при взаимодействии с HNO 2 образуют α-нитрозонитросоединения, таутомерные с нитроловыми кислотами:

Щелочные соли нитроловых кислот имеют ярко-красный цвет.

Вторичные нитросоединения с HNO 2 образуют псевдонитролы:

Растворы псевдонитролов в эфире и хлороформе имеют синий цвет.

5. Конденсация с альдегидами . Подвижность водорода в α-положении позволяет провести реакции конденсации с альдегидами по альдольно-кротоновому типу.

Если для конденсации используется бензальдегид, промежуточный альдоль из-за своей неустойчивости практически сразу переходит в β-нитростиролов:

6. Реакции углеводородных радикалов . Алифатические нитросоединения могут быть прогалогенированы в присутствии щелочей в α-положение.

Непредельные нитросоединения проявляют все свойства кратных связей (кроме реакции восстановления). Присоединение к α, β-кратным связям идет против правила Марковникова, так как группа –NO 2 проявляет сильные акцепторные свойства.

Для ароматических нитросоединений реакции электрофильного замещения протекают более трудно, чем для бензола, так как нитрогруппа является заместителем 2-го рода (электроноакцепторный заместитель), затрудняет реакции с электрофильными реагентами.

Реакции с нуклеофильными реагентами нитрогруппа облегчает. При кипячении с КОН образуется смесь о - и п -нитрофенолятов калия:

При увеличении числа нитрогрупп, стоящих в м -положении по отношению друг к другу, нитросоединения проявляют еще большую реакционноспособность по отношению к нуклеофильным реагентам. Тринитробензол в щелочной среде окисляется очень слабыми окислителями (железосинеродистым калием) до пикриновой кислоты:

8.1 НИТРОСОЕДИНЕНИЯ: определение, изомерия, номенклатура.

Нитросоединениями называются органические вещества, содержащие в качестве функциональной группы нитрогруппу –NO 2 . Атом азота нитрогруппы непосредственно связан с углеродом в отличие от эфиров азотистой кислоты, содержащих функциональную группу –ОNO, где связь осуществляется через кислород. Эфиры азотистой кислоты изомерны нитросоединениям:

R–NO 2 – нитросоединение

R–ONO – эфир азотистой кислоты

Изомерия. Номенклатура. Строение нитрогруппы

В зависимости от природы органического радикала, с которым соединена нитрогруппа, различают нитросоединения алифатические (предельные и непредельные), алициклические, ароматические и гетероциклические. По характеру углеродного атома, связанного с нитрогруппой, нитросоединения подразделяются на первичные, вторичные и третичные (подобно галогенопроизводным и спиртам). В состав молекулы может входить одна или несколько нитрогрупп.

По номенклатуре ИЮПАК нитрогруппа обозначается как заместитель с указанием ее положения в углеродной цепи цифрой:

Строение нитрогруппы может быть обозначено следующими формулами, в соответствии с которыми один из атомов кислорода образует с азотом двойную, другой – семиполярную связь:

Эти формулы вскрывают причину полярности нитросоединений, однако в реальной молекуле связи обоих атомов кислорода с азотом не отличаются друг от друга. В нитрогруппе появляется мезомерия: связи имеют промежуточный характер, распределение электронной плотности выравнивается. Поэтому более точное строение нитрогруппы передают следующие формулы:

Способы получения

Получение нитросоединений, по М. И. Коновалову, нитрованием в газовой фазе; из галогенопроизводных, а также в ароматическом ряду действием нитрующей смеси рассмотрено в гл.3,8,9

Физические свойства

Нитросоединения жирного ряда – жидкости, обладающие приятным запахом, перегоняющиеся без разложения.

Мононитросоединения ароматических углеводородородов – жидкие или твердые вещества, бесцветные или бледно желтые. Ароматические нитросоединения, а также алифатические с числом углеродных атомов менее четырех – тяжелее воды, а алифатические нитросоединения с числом атомов углерода 4 и более – легче воды. Все нитросоединения малорастворимы в воде, ядовиты, не вызывают коррозии металлов, их водные растворы имеют нейтральную реакцию. Нитросоединения – полярные вещества; их дипольные моменты порядка 1,17÷1,34∙10 -29 Кл/м (3,5÷4,0 Д). Поэтому они кипят при более высоких температурах, чем спирты или карбонильные соединения.

В ИК-спектрах нитросоединений имеются интенсивные полосы в области длин волн 1375 и 1580 см -1 .

Химические свойства

1. Восстановление. Конечными продуктами восстановления нитросоединений являются первичные амины.

2. Действие щелочей. Таутомерия нитросоединений.

Нитрогруппа, обладая сильным положительным зарядом на атоме азота, оттягивает на себя электронную плотность и увеличивает подвижность водородов у соседнего атома углерода – их способность отщепляться в виде протона. Подвижность α-водородных атомов первичных и вторичных нитросоединений проявляется в их способности реагировать со щелочами с образованием солей. Это объясняется тем, что в щелочной среде нитросоединения перегруппировываются в аци-нитроформу (кислотную):

Таким образом, нитросоединения следует рассматривать как таутомерные вещества, реагирующие в нитро- и аци-нитроформах.

Если щелочные растворы нитросоединений обработать минеральной кислотой, то происходит медленный обратный сдвиг равновесия:

Поэтому нитросоединения относят к псевдокислотам. Для псевдокислот характерно, что сами они нейтральны, не обладают электропроводностью, тем не менее, образуют нейтральные соли щелочных металлов. «Нейтрализация» нитросоединений основаниями (образование нейтральных солей) идет медленно, а нейтрализация истинных кислот происходит, как известно, мгновенно.

3. Подвижность α-водородных атомов проявляется при взаимодействии первичных и вторичных нитросоединений с альдегидами:

Эта конденсация идет по альдольно-кротоновому типу.

4. Первичные и вторичные нитросоединения реагируют с азотистой кислотой, а третичные не реагируют:

Щелочные соли нитроловых кислот в растворе имеют красный цвет. Псевдонитролы в растворах и в расплавах окрашены в синий или зеленовато-синий цвет.

5. Соли аци-формы первичных и вторичных нитросоединений на холоду в водных растворах при действии минеральных кислот образуют альдегиды или кетоны (в момент выделения аци-форма подвергается гидролизу):

6. Влияние нитрогруппы в ароматическом ядре.

Нитрогруппа относится к заместителям второго рода: оттягивая электроны из ароматического ядра она уменьшает его активность в реакциях электрофильного замещения. Вступающий заместитель направляется в мета-положение:

Электронная плотность особенно сильно уменьшается в орто- и пара-положениях к нитрогруппе. Обедненные электронной плотностью орто- и пара-положения ядра приобретают частичный положительный заряд, а вместе с тем и способность к необычным для ароматических соединений реакциям нуклеофильного замещения:

Оттягивая электронную плотность из ядра, нитрогруппа повышает кислотность стоящих в орто- и пара-положениях гидроксильных групп. Пикриновая кислота ведет себя, как настоящая кислота (сила ее превышает силу угольной кислоты) – образует соли, эфиры со спиртами.

Под влиянием нитрогруппы увеличивается реакционная способность галогена, стоящего в орто- и пара-положениях:

Задачи для самопроверки

1. Изобразите структурные формулы нитрометана, нитроэтана и 2-нитропропана и укажите вид химической связи в этих соединениях.

2. Назовите следующие соединения:

3. Напишите структурные формулы нитросоединений состава С 5 Н 11 NO 2 и назовите их.

4. Напишите структурные формулы нитросоединений, изомерных бутиловому эфиру азотной кислоты. Укажите первичные, вторичные и третичные нитросоединения.

5. Напишите аци-нитро-таутомерные формы для следующих соединений:

С помощью каких реакций можно доказать наличие таутомерных форм?

6. Предложите способ получения нитроэтана из ацетилена. Напишите реакции нитроэтана с формальдегидом, азотистой кислотой, щелочью, восстановления.

7. Дегидратацией продукта конденсации нитросоединения с карбонильным соединением получен 3-нитро-3-гексен. Установите строение исходных нитросоединения и карбонильного, а также напишите реакцию конденсации.

8.2 АМИНЫ: определение, изомерия, номенклатура

Аминами называются производные аммиака, полученные замещением в нем атомов водорода на углеводородные радикалы

В зависимости от числа атомов водорода, замещенных радикалами, различают первичные, вторичные или третичные амины. При этом не имеет значения, какие радикалы (первичные, вторичные или третичные) являются заместителями.

Изомерия. Номенклатура

Изомерия аминов зависит от положения аминогруппы в углеродной цепи и от количества и строения радикалов, связанных с атомом азота.

Названия аминов обычно производят от названий входящих в их состав радикалов с добавлением окончания – амин:

СН 3 −NH 2 - метиламин, (CH 3 −CH 2) 2 NH - диэтиламин,

(CH 3) 3 N - триметиламин

В номенклатуре ИЮПАК аминогруппу рассматривают как функцию и ее название «амино-» ставят перед названием основной цепи, с указанием ее положения цифрой:

Оба эти амина являются первичными.

Способы получения

1. Действие аммиака на галогенпроизводные (реакция Гофмана). При этом получается смесь различных аминов:

Смесь аминов обрабатывают щелочью и подвергают перегонке с водяным паром, а гидроксид полностью замещенного аммония [(CH 3) 4 N] + OH − остается в перегонной колбе. Разделение аминов производят, пользуясь их различной реакционной способностью.

2. Пропусканием паров спирта и аммиака при 300 0 С над катализатором (Al 2 O 3 ; ThO 2) получают смесь первичных, вторичных и третичных аминов с преобладанием первичных:

3. Амиды кислот при расщеплении гипобромитом или гипохлоритом дают первичные амины (перегруппировка Гофмана):

4. Восстановление различных азотосодержащих соединений: нитросоединений, нитрилов, изонитрилов, оксимов или гидразинов:

Физические свойства

Простейшие амины – газы, хорошо растворимые в воде и обладающие аммиачным запахом (метиламин, диметиламин, триметиламин). Остальные низшие амины – жидкости с запахом аммиака. Более сложные амины – жидкости с запахом рыбы. Высшие амины – твердые вещества лишенные запаха. С увеличением молярной массы аминов увеличивается их плотность, повышается температура кипения и уменьшается растворимость в воде. При равном числе углеродных атомов выше всего температура кипения первичных аминов и ниже всего третичных (за счет ассоциации в результате образования водородных связей).

Простейшие амины в отличие от аммиака горят на воздухе.

В ИК-спектрах первичных и вторичных аминов наблюдается поглощение в области 3300 – 3500 см –1 , отвечающее валентным колебаниям N–H связи. Полосы поглощения располагаются в области длин волн 1100 – 1300 см –1 и трудно идентифицируются.

Химические свойства

В химическом отношении амины очень сходны с аммиаком: вступают в различные реакции как нуклеофильные реагенты. Как и аммиак, амины обладают основными свойствами, что объясняется связыванием протонов в слабо диссоциирующий катион замещенного аммония. Основность ароматических аминов понижена.

1. Амины с минеральными кислотами дают соли, которые под действием более сильного основания вновь дают свободные амины:

2. Амины вступают в реакцию алкилирования. (См. способы получения аминов: реакция Гофмана).

3. Амины можно ацилировать, в частности ацетилировать, действуя уксусным ангидридом или хлористым ацетилом:

4. Первичные амины могут быть окислены до нитросоединений или других продуктов окисления:

Следовательно, при использовании аминов в различных синтезах, аминогруппу необходимо защищать при действии окислителей. Такой защитой является реакция ацилирования аминов (см. пункт3)

5. Действие азотистой кислоты.

Эта реакция имеет важное аналитическое значение, так как позволяет различать первичные, вторичные и третичные амины.

а) При действии азотистой кислоты на первичные алифатические амины (кроме метиламина) выделяется свободный азот и образуется спирт:

Реакцию удобнее вести с солью азотистой кислоты в присутствии минеральной кислоты.

б) При взаимодействии первичных ароматических аминов с азотистой кислотой образуются соли диазония:

в) Алифатические и ароматические вторичные амины с азотистой кислотой образуют N-нитрозамины:

г) Третичные алифатические амины с азотистой кислотой не реагируют, а третичные ароматические амины образуют п-нитрозосоединения:

6. При слабом нагревании ароматических первичных аминов с ароматическими альдегидами легко образуются шиффовы основания или азометины:

7. При нагревании первичных ароматических аминов с хлороформом и спиртовой щелочью получаются карбиламины или изонитрилы.

8. Благодаря склонности к образованию σ-комплексов в о- и п- положениях к аминогруппе ароматические амины легко вступают в реакции электрофильного замещения. При этом получаются главным образом п-продукты:


В реакциях сульфирования аминогруппа не требует защиты.

Понятие о диаминах

Соединении, содержащие две амино группы в молекуле, называются диаминами:

NH 2 -CH 2 -CH 2 -NH 2 этилендиамин, 1,2-диаминоэтан

NH 2 -CH 2 -CH 2 -CH 2 -CH 2 -NH 2 тетраметилендиамин, 1,4-диаминобутан

NH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -NH 2 пентаметилендиамин, 1,5-диаминопентан

Диамины могут быть получены теми же способами, что и моноамины: восстановлением динитросоединений, взаимодействием аммиака с дигалогенпроизводными, восстановлением динитрилов и т.д.

Низшие диамины растворимы в воде и являются более сильными основаниями, чем моноамины.

Диамины образуют соли с двумя эквивалентами кислот, могут алкилироваться и ацилироваться с участием как одной, так и обеих аминогрупп.

Некоторые диамины – путресцин и кадаверин (тетраметилендиамин, пентаметилендиамин) образуются при декарбоксилировании аминокислот в результате жизнедеятельности многих микроорганизмов.

Задачи для самопроверки

1. Какова электронная конфигурация атома азота в триметиламине?

2. Напишите структурные формулы всех возможных изомеров аминов состава С 4 Н 11 N. Укажите первичные, вторичные и третичные амины.

3. Напишите реакции, с помощью которых из этилена можно получить: а) этиламин, б) пропиламин, в) метиламин, г) триэтиламин.

4. Предложите реакции, позволяющие осуществить следующие превращения:

а) этиленовый углеводород → 3-метил-2-бутанамин;

б) предельный углеводород → метил-трет-амиламин

Приведите реакции характерные для каждого из этих аминов.

5. Используйте ацетон для получения изопропиламина. Напишите для изопропиламина реакции с хлористым ацетилом, азотистой кислотой, окислителем.

6. Напишите уравнения реакций, соответствующие схеме; назовите все органические вещества:

7. При действии азотистой кислоты на амин, состава С 6 Н 15 N, выделяется азот и образуется спирт С 6 H 14 O и алкен С 6 Н 12 , озонолизом которого получают ацетальдегид и метилэтилкетон. Установите строение амина и напишите все перечисленные реакции.

8.3. ДИАЗО- и АЗОСОЕДИНЕНИЯ: определение, изомерия, номенклатура

Ароматическими диазосоединениями называют различные по строению, однако легко взаимопревращаемые соединения: соли диазония, диазогидроксиды, соли диазогидроксидов – диазотаты, диазоцианиды и другие подобные вещества.

Диазосоединения ArN 2 X – это органические вещества с функциональной группой, составленной из двух атомов азота и соединенных с ароматическим радикалом и неорганическим остатком Х. Среди диазосоединений наиболее важными являются соли диазония.

Соли диазония состоят из диазокатиона и аниона, например + Cl – (хлористый бензол диазоний). По своему характеру они подобны аммонийным солям.

Генетически связаны с солями диазония азосоединения, которые имеют функциональную группу того же состава, имеющую строение –N=N– и стоящую между двумя ароматическими радикалами: Ar–N=N–Ar.

Несимметричные структуры (R-N=N-R′) называют, прибавляя в качестве приставки название радикала R-N=N- (арилазо-) к названию родоначального углеводорода. В качестве родоначального углеводорода RH выбирают ту часть молекулы, которая содержит заместитель, обозначаемый окончанием в названии соединения, например

Способы получения

Общий и важнейший способ получения диазосоединений заключается в действии азотистой кислоты на соли первичных ароматических аминов (реакция диазотирования).

Практически вместо неустойчивой в свободном состоянии азотистой кислоты берут ее соль и сильную минеральную кислоту (соляную, серную) в количестве, достаточном для образования соли амина, выделения азотистой кислоты из ее соли и сохранения кислой среды после окончания процесса. Избыток кислоты необходим для стабилизации соли диазония:

Ar-NH 2 + NaNO 2 + 3HCl → + Cl − + NaCl + 2H 2 O

Диазосоединения почти никогда не выделяют в твердом виде (это опасно из-за взрывчатости сухих диазосоединений), а используют непосредственно раствор для дальнейших превращений.

Если требуется получить свободную соль диазония, то реакцию диазотирования проводят в каком-либо органическом растворителе с помощью эфиров азотистой кислоты. Тогда соль диазония выпадает в осадок:

8.3.2 Физические и химические свойства

Реакции диазосоединений отличаются большим разнообразием. Их обычно разделяют на две группы – реакции с выделением азота и реакции без выделения азота. Первые имеют большое значение для синтеза разнообразных ароматических соединений, вторые – служат основой отрасли промышленности – получение азокрасителей.

Лекция: Характерные химические свойства азотсодержащих органических соединений: аминов и аминокислот

Амины, особенности их строения

Вам уже известно, что молекулы органических соединений состоят из атомов углерода, водорода и кислорода. Но среди них есть и такие, которые содержат атомы азота. Именно азотсодержащие органические соединения, такие как аминокислоты, белки и нуклеиновые кислоты, являются основой жизни на Земле. Самыми простыми азотсодержащими соединениями являются амины.

Амины – это органические соединения, являющиеся производными аммиака, в молекуле которых один или несколько атомов водорода замещены на углеводородные радикалы (R).

Исходя из данного утверждения, т.е. по числу аминогрупп NH 2 амины подразделяются на:

    первичные,

    вторичные и

    третичные.

Атом азота в молекуле амина всегда готов предоставить свою неподеленную электронную пару другому атому, поэтому он является донором. Таким образом, связь катиона водорода с атомом азота в молекуле амина происходит с помощью донорно-акцепторного механизма. Исходя из этого, амины, как и аммиак, обладают достаточно выраженными основными свойствами.

В зависимости от типа радикала, связанного с атомом азота, амины подразделяются на:

    алифатические (CH 3 -N<) и

    ароматические (C 6 H 5 -N<).

Изомерия алифатических аминов:

Алифатические амины, иначе называемые предельными, являются более сильными основаниями, чем аммиак. Это обусловлено тем, что в аминах углеводородные заместители имеют положительный индуктивный (+I) эффект. Так же, из - за этого, на атоме азота возрастает электронная плотность. Данный процесс заметно облегчает его взаимодействие с катионом Н + .

Изомерия ароматических аминов:

Ароматические амины проявляют более слабые основные свойства по сравнению с аммиаком. Это объясняется тем, что неподеленная электронная пара атома азота сдвигается в сторону ароматической π-системы бензольного кольца. Впоследствии, электронная плотность на атоме азота постепенно снижается.

Химические свойства аминов

Наличие электронной пары на атоме азота наделяет амины основными свойствами. Первичные предельные амины, в силу более сильных основных свойств, взаимодействуют с водой несколько лучше аммиака. В свою очередь, основность вторичных предельных аминов больше первичных. Проявление основных свойств третичными аминами не так однозначно, потому что атом азота в них, нередко экранирован углеводородными радикалами, что мешает проявлению его основных свойств.

    Амины вступают в обратимые реакции с водой. Водный р-р аминов является щелочной средой, что является следствием диссоциации образующихся оснований. Общий вид реакции выглядит следующим образом:

RNH 2 + H 2 O <-> RNH 3 + + OH -

    Свободные предельные амины и их водные р-ры взаимодействуют с кислотами с образованием солей. К примеру:

CH 3 NH 2 + H 2 SO 4 → HSO 4

C 6 H 5 NH 2 + HCl → Cl

    Соли аминов представляют собой аналоги солей аммония и являются твердыми веществами. Они хорошо растворяются в воде и плохо в неполярных органических растворителях. В реакциях с щелочами при нагревании из солей аминов высвобождаются свободные амины:

[CH 3 NH 3 ]Cl + NаОH CH 3 NH 2 + Cl + H 2 O

    Первичные предельные амины взаимодействуют с азотистой кислотой с образованием спиртов, газообразного азота N 2 и воды:

RNH 2 + HNO 2 ROH + N 2 + H 2 O

Это качественная реакция первичных предельных аминов и применяется для их различения от вторичных и третичных.

Вторичные амины в такой же реакции образуют масляные жидкости с запахом - N -нитрозамины:

R 2 NH + HO-N=O R 2 N-N=O + H 2 O

Третичные амины с азотистой кислотой не взаимодействуют.

  • Амины вступают в реакции нуклеофильного замещения:

CH 3 CH 2 Br + CH 3 CH 2 NH 2 → (CH 3 CH 2 ) 2 NH 2 + Br - CH 2 CH 3

  • Взаимодействие первичных и вторичных аминов с карбоновыми кислотами приводит к их ацилированию, в результет образуются важнейшие органические соединения амиды:

    Полное сгорание любых аминов приводит к образованию углекислого газа, воды и азота:

4C n H 2n+3 N + (6n+3)O 2 → 4nCO 2 + (4n+6)H 2 O

Рассмотрим характерные химические свойства анилина (аминобензола) - простейшего ароматического амина. Аминогруппа в молекуле данного вещества непосредственно соединена с ароматическим кольком. Основные свойства анилина намного слабее алифатических аминов. Поэтому реакция анилина с водой и слабыми кислотами (например, угольной) не идёт.

    Анилин реагирует с сильными и средними неорганическими кислотами с образованием фениламмония. К примеру:

С 6 Н 5 N Н 2 + HCl → С 6 Н 5 N Н 3 С l

Соли фениламмония C 6 H 5 NH 3 + хорошо растворимы в воде, но не­растворимы в неполярных органических растворителях.

    Аминогруппа ароматических аминов, в частности анилина, втянутая в ароматическое кольцо снижает электронную плотность на атоме азота, но увеличивает ее в ароматическом ядре. Поэтому реакции электрофильного замещения (с галогенами) протекают значительно легче, особенно в орто- и пара- положениях. К примеру, анилин с легкостью вступает во взаимодействие с бромной водой, образуя белый осадок 2,4,6-триброманилина:

Это качественная реакция на анилин.

    Анилин реагирует с азотистой кислотой при t 0 0 С, образуются соли диазония, имеющие большое практическое значение и применяемые для синтеза азокрасителей и других соединений:

C 6 H 5 NH 2 + KNO 2 + 2HCl → + Cl - + KCl + 2H 2 O

Продуктами приведенной реакции являются хлорид фенилдиазония, хлорид калия и вода.

При проведении реакции данного типа при высокой t выделяется азот, а анилин превращается в фенол:

C 6 H 5 NH 2 + NaNO 2 + H 2 SO 4 → C 6 H 5 -OH + N 2 + NaHSO 4 + H 2 O

    Алкилирование анилина галогенпроизводными углеводородов образует вторичные и третичные амины.

Химические свойства аминокислот

Аминокислоты - органические соединения, молекулы которых имеют две функциональные группы – амино (-NH 2) и карбокси- (-COOH).

Общая формула аминокислот: (NH2)xR(COOH)y, где x и y чаще всего равны 1 или 2.

Наличие в молекулах данных соединений амино- и карбокси- групп объясняет химические свойства аминокислот, схожие с аминами и карбоновыми кислотами. Поэтому аминокислоты проявляют основные свойства, характерные для соединений, содержащих аминогруппы и ксилотные свойства, характерные для соединений, содержащих карбоксильную группу. Следовательно, аминокислоты - амфотерные органические соединения.

  • В реакциях с щелочами аминокислоты проявляют кислотные свойства:

H 2 N-СH 2 -СООН + NаOН → H 2 N-СH 2 -СООН - Nа + + H 2 O

  • В реакциях этерификации со спиртами также проявляют кислотные свойства:

NH 2 CH 2 COOH + CH 3 OH → NH 2 CH 2 COOCH 3 + H 2 O

    В реакциях с сильными кислотами проявляют основные свойства:

NH 2 CH 2 COOH + HCl → + Cl -

    Реакция с азотистой кислотой протекает как в случаях с первичными аминами:

NH 2 -CH 2 -COOH + HNO 2 → НО-CH 2 -COOH + N 2 + H 2 O

    Алкилирование аминокислоты:

NH 2 CH 2 COOH + CH 3 I → + I -

    В реакциях друг с другом аминокислоты образуют дипептиды – соединения, содержащие в своих молекулах пептидную связь –C(O)-NH-. К примеру, в реакции глицина и аланина образуется дипептид глицилаланин:

Проведение данной реакции без соблюдения специфических условий синтеза приведет к образованию не глицилаланина, а аланилглицина.






В продолжение темы:
Стрижки и прически

Для приготовления сырков понадобятся силиконовые формочки среднего размера и силиконовая кисточка. Я использовала молочный шоколад, необходимо брать шоколад хорошего качества,...

Новые статьи
/
Популярные