Великая теорема Ферма: доказательство Уайлса и Перельмана, формулы, правила расчета и полное доказательство теоремы. Теорема Ферма: история доказательства Эндрю Уайлса Как это было

Математик Эндрю Уайлс получил Абелевскую премию за доказательство теоремы Ферма


Почетная награда, которую называют "Нобелевской премией для математиков", была присуждена ему за доказательство Великой (Последней) теоремы Ферма в 1994 году



Эндрю Уайлс
© AP Photo/Charles Rex Arbogast, архив


ОСЛО, 15 марта. /Корр. ТАСС Юрий Михайленко/. Британец Эндрю Уайлс был объявлен лауреатом Абелевской премии, которую присуждает Академия наук Норвегии. Почетная награда, которую нередко называют "Нобелевской премией для математиков", была присуждена ему за доказательство Великой (Последней) теоремы Ферма в 1994 году, "положившее начало новой эре в теории чисел".
"Новые идеи, введенные Уайлсом в научный обиход, открыли возможность для дальнейших прорывов", - сказал глава Абелевского комитета Йон Рогнес. - Немногие математические проблемы имеют столь богатую научную историю и столь эффектное доказательство, как Последняя теорема Ферма".
Научный путь сэра Эндрю
В комментарии Норвежскому телеграфному бюро Рогнес также уточнил, что доказательство знаменитой теоремы стало лишь одной из причин, по которым Уайлс был выбран среди кандидатов, номинированных на премию в этом году.
"Для решения теоремы, которую не могли доказать 350 лет, он использовал подходы двух современных областей математической науки, изучающих, в частности, полустабильные эллиптические кривые, - сказал журналистам Рогнес. - Такая математика используется, например, в эллиптической криптографии, с помощью которой защищаются данные о платежах, совершаемых с помощью пластиковых карт".
Ученый, которому в следующем месяце исполнится 63 года, получил образование в Оксфордском и Кембриджском университетах. Его отец был англиканским священником и более 20 лет занимал должность профессора теологии в Кембридже. Сам Уайлс на протяжении 30 лет работал в США, преподавая в Принстонском университете, и с 2005 по 2009 год возглавлял там кафедру математики. В настоящее время он работает в Оксфорде. На его счету полтора десятка математических премий, за научные заслуги он был также посвящен в рыцари королевой Великобритании Елизаветой II.
Обманчивая простота
Особенность теоремы, сформулированной французом Пьером Ферма (1601 - 1665), в обманчиво простой формулировке: уравнение "А в степени n плюс B в степени n равно С в степени n" не имеет натуральных решений, если число n больше двух. На первый взгляд она предполагает и довольно простое доказательство, однако на деле это оказывается совсем не так.
Сам Уайлс в многочисленных интервью признавался, что теорема заинтриговала его еще в 10 лет. Уже тогда ему было просто понять условия задачи, и не давал покоя тот факт, что за три века ни один математик не смог ее решить. Детское увлечение не прошло с годами. Уже сделав научную карьеру, Уайлс на протяжении многих лет в свободное время бился над решением, однако не афишировал этого, так как среди его коллег увлечение теоремой Ферма считалось дурным тоном. Свое доказательство он предложил, основываясь на гипотезе двух японских ученых, и опубликовал в 1993 году, но несколько месяцев спустя в его расчетах была обнаружена ошибка.
Больше года вместе со своими учениками Уайлс пытался ее исправить, под конец едва не опустив руки, однако в конечном итоге все же нашел доказательство, которое было признано верным. При этом якобы существующее простое и изящное доказательство, о котором упоминал сам Ферма, до сих пор не найдено.
Кем был Хенрик Абель
В 2014 и 2009 годах лауреатами Абелевской премии становились воспитанники русской математической школы - Яков Синай и Михаил Громов, соответственно. Награда носит имя знаменитого норвежца Нильса Хенрика Абеля. Он стал основоположником теории эллиптических функций и внес значительный вклад в теорию рядов.
В честь 200-летия со дня рождения ученого, прожившего всего 26 лет, норвежское правительство в 2002 году выделило 200 млн крон (около $23,4 млн по текущему курсу) на учреждение Абелевского фонда и одноименной премии. Она призвана не только отмечать заслуги выдающихся математиков, но и способствовать росту популярности этой научной дисциплины среди молодежи.
На сегодняшний день размер денежной составляющей премии равен 6 млн крон ($700 тысяч). Официальная церемония вручения награды должна пройти 24 мая. Почетную награду лауреату вручит наследник норвежского престола - принц Хокон Магнус.

Теорема Ферма дразнила математиков более трех веков, хотя она проста на вид, а сам Ферма уверял, что знает, как ее доказать, одна беда - места не хватает записать. Доказать проклятую теорему удалось ученому из Принстона Эндрю Уайлсу около 10 лет назад. «Чердак» вспоминает историю, пожалуй, самого знаменитого доказательства в истории математики.

Уайлсу потребовались годы работы и знание самых современных разделов математики. Недавно он получил за это достижение премию, которую называют Нобелевкой для математиков. При этом формулировка теоремы Ферма крайне проста: она утверждает, что нет таких целых значений x , y и z , для которых бы выполнялось равенство x n +y n =z n при n больше 2. Эту теорему сформулировал французский математик Пьер де Ферма в XVII веке. Читая «Арифметику» Диофанта, он записал уравнение на полях, в той части книги, где речь шла о теореме Пифагора.

Заметки на полях

Теорема Пифагора известна каждому, кто в школе хотя бы иногда не прогуливал математику: в прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы. Теорема была доказана, как можно догадаться, Пифагором, а уже его ученики доказали, что существует бесконечное множество так называемых пифагорейских троек - целых чисел, для которых выполняется условие x 2 +y 2 =z 2 . Например, 3 2 +4 2 =5 2 или 99 2 +4900 2 =4901 2 .

Ферма задался вопросом: а что если вместо квадратов в формуле будут кубы: x 3 +y 3 =z 3 ? Можно ли для такого равенства найти красивые тройки целых чисел? А если в показателе степени будет стоять 4? А если 5? Ферма утверждал, что если показатель степени больше двух, то таких троек целых чисел не существует. Рядом с формулировкой теоремы Ферма оставил коварную запись: «Я нашел поистине удивительное доказательство этого предложения, но поля здесь слишком узки для того, чтобы вместить его». В чем заключалось это доказательство, он так никому и не сообщил.

В обычной жизни Ферма был крупным провинциальным чиновником, а наукой занимался в свободное от работы время. В то время среди математиков было не очень-то принято делиться с коллегами своими результатами. Ферма же выделялся особенной замкнутостью даже среди коллег: он мало с кем обсуждал свои идеи, а когда ему удавалось найти интересное решение сложной математической задачи, он развлекался тем, что отправлял товарищам-математикам формулировки этих задач, но не их решения. Публиковать свои математические выкладки он тоже не стремился.

Французский чиновник и математик Пьер де Ферма

Знаменитая теорема не канула в Лету вместе с другими открытиями Ферма лишь благодаря тому, что старший сын эксцентричного ученого-любителя после смерти отца взялся опубликовать все его отрывочные заметки. В них обнаружилось множество интересных и важных для математики теорем - часто без доказательств или лишь с набросками таковых. С тех пор все они были доказаны, и только уравнение, известное теперь как теорема Ферма, упорно не поддавалось.

Загадка на века

Простота формулировки и замечание, оставленное Ферма по поводу доказательства теоремы, дразнили профессионалов и любителей математики на протяжении веков. Ведь Ферма располагал теми же знаниями, что и его современники, значит, для доказательства теоремы требовалось лишь сделать какой-то необычный ход.

В истории попыток доказать, что «нужных» троек целых чисел не существует, порой случались небольшие прорывы. Так, через сто лет после Ферма Леонарду Эйлеру удалось доказать, что теорема верна при n =3. Другие математики доказали теорему для еще нескольких частных случаев или же намечали возможные подступы к решению задачи. Во второй половине XX века стали доступны компьютеры и математикам удалось показать, что теорема Ферма верна при значениях n от 2 до 500, затем счет пошел на тысячи, затем на миллионы, однако все это по-прежнему не означало, что утверждение Ферма верно для любых значений n .

Дело жизни

Таково было положение дел, когда о теореме впервые узнал десятилетний Эндрю Уайлс. Он загорелся идеей доказать ее, и эта мысль не оставляла ученого на протяжении всей математической карьеры.

Во второй половине 1980-х годов Уайлс полностью сосредоточился на теореме Ферма. Он продолжал преподавать в Принстонском университете, но отказался от участия в конференциях и любой другой публичной деятельности. Уайлс никому не рассказывал о своей цели: во-первых, ему не хотелось тратить время на обсуждения, во-вторых, в случае успеха слава досталась бы ему одному. А в третьих, его могли просто не принять всерьез - уж больно много чудаков и сумасшедших покушалось до него на доказательство великой теоремы. Он понимал, что ему потребуются годы работы и боялся, что, если он будет рассказывать о своей работе, в последний момент решающий шаг сделает кто-то другой. Для того чтобы не вызывать подозрений, Уайлс воспользовался одним из своих исследований, посвященных эллиптическим кривым. Оно было завершено, но математик публиковал его по кусочкам, притворяясь, что продолжает свои исследования в этой области. В тайну своей настоящей работы Уайлс посвятил только жену, и многие коллеги ученого начали считать, что его «исчезновение» связано с тем, что бедняга исчерпал свой математический талант.

Эндрю Уайлс у памятника Пьеру де Ферма. Фото: Klaus Barner/Wikipedia

В 1988 году, когда Уайлс вовсю работал над своим доказательством, японский математик Иоичи Мияока заявил, что ему удалось «взломать» теорему Ферма. Математики всего мира принялись изучать выкладки Мияоки и, к несчастью для него, в рассуждениях обнаружились серьезные пробелы, так что Уайлс продолжил работу.

Однако к 1991 году математик перебрал все доступные ему инструменты, а теорема Ферма все еще не поддавалась. Уайлсу пришлось прервать отшельничество, чтобы пообщаться с коллегами и выяснить, нет ли у тех каких-нибудь новых идей, полезных для его работы. И такие идеи нашлись - работа Уайлса сдвинулась с мертвой точки, и он уже предвидел успех, однако математику нужно было проверить все созданные выкладки. Уайлсу требовался эксперт, владеющий всеми тонкостями использованных им методов, однако это означало, что этого человека придется посвятить в свой замысел. И Уайлс доверился своему коллеге в Принстоне Нику Катцу.

Эксперту предстояло разобраться в работе, которую Уайлс вел в течение нескольких лет. Подступиться к такому объему материала было непросто, и Уайлс с Катцом нашли изящный выход. Уайлс объявил курс лекций для аспирантов с весьма расплывчатым названием «Вычисления по поводу эллиптических кривых». На лекциях Уайлс детально излагал ту часть доказательства, в которой он не был уверен и которая нуждалась в проверке. Только Катц знал, к чему все эти выкладки, для всех остальных слушателей это был просто курс лекций, причем крайне сложный, очень детальный и не очень понятно, к чему применимый. Постепенно слушатели разбежались, и в конце концов в аудитории на лекциях присутствовали лишь сами Уайлс и Катц.

Теорема доказана...

Проверка позволила убедиться, что в доказательстве Уайлса нет пробелов. В 1993 году он был уверен, что в его работе все верно. Ученый представил результат своих трудов на крупном математическом симпозиуме в Кембридже в конце июня 1993 года.

Весть о том, что теорема Ферма доказана, наделала много шуму. Тем более что для завершения работы Уайлсу потребовалось сначала доказать так называемую гипотезу Таниямы-Шимуры. Для математиков она не менее, а может быть даже более важна, чем собственно теорема Ферма, так как позволяет установить связь между разделами математики, ранее казавшимися крайне далекими друг от друга. В прессе поднялась шумиха, и Уайлс стал знаменитостью.

...или все-таки нет?

Он отправил свое доказательство для публикации в научный журнал, и шестеро рецензентов принялись за тщательную проверку его выкладок, занимавших 200 страниц. Одна из частей доказательства попала на проверку Катцу. С большинством вопросов, возникающих у рецензентов, Уайлс легко справлялся, однако у Катца возник небольшой вопрос, на который автор доказательства не смог сразу ответить. И чем больше он углублялся в разъяснения, тем очевиднее становилось, что речь идет не о небольшой ошибке, а о серьезной проблеме, пропущенной Катцом и Уайлсом, даже несмотря на устроенный ими курс лекций именно по самой «проблемной» части доказательства.

Уайлс надеялся «починить» доказательство, найдя способ устранить ошибку, но ему это никак не удавалось, и среди математиков поползли слухи, что и на этот раз доказательство теоремы Ферма не выдержало критики. Конечно, Уайлсом и без того была проделана огромная работа, которая дала много важных результатов, но он хотел доказать теорему Ферма, и для него найденная ошибка была кошмаром.

Уайлс снова скрылся от публики и работал лишь с одним из рецензентов своей статьи (и по совместительству бывшим аспирантом) Ричардом Тейлором. Тейлор для этого специально приехал в Принстон. Все лето 1994 года они искали решение проблемы и не нашли. Уайлс уже готов был смириться с поражением, но Тейлор уговорил его продолжить поиски до октября, когда Тейлору нужно было уезжать.

Не надеясь найти решение, Уайлс, по крайней мере, решил понять, почему в его выкладки вкралась ошибка. Утром 19 сентября 1994 года математик сидел в своем кабинете, изучая использованные им методы доказательства, и внезапно его озарило. Он понял, что нужно сделать, чтобы его доказательство снова заработало. Наконец-то он смог отправить статью с доказательством теоремы Ферма, а также совместную с Тейлором статью с необходимыми дополнительными доказательствами в редакцию журнала Annals of Mathematics . Эти работы были опубликованы в 1995 году. Теорема Ферма была доказана,теперь - без всяких сомнений.

Грандиозная шутка

И все же в этой истории осталась одна загадка. Три с половиной века математики бились над теоремой Ферма, а ее доказательство потребовало использования самых современных методов и доказательства другой важной теоремы, сформулированной лишь в XX веке. Всего этого во времена Ферма просто не было. Действительно ли он располагал «поистине удивительным доказательством» своей теоремы? Есть подозрение, что нет, ибо в записках Ферма остались следы поисков решений при n =4 и n =5, что было бы излишне, будь у математика доказательство теоремы в общем виде. Но даже если самонадеянный математик-затворник ошибся, значение созданной им интриги трудно переоценить. Ощущение, что «истина где-то рядом» вдохновляло на поиски решения многих математиков, и кто знает, как сложилась бы судьба теоремы, не будь она столь популярна.

August 5th, 2013

В мире можно найти не так уж много людей, ни разу не слы-шавших о Великой теореме Ферма — пожалуй, это единственная математическая задача, получившая столь широкую известность и ставшая настоящей легендой. О ней упоминается во множестве книг и фильмов, при этом главный контекст почти всех упоми-наний — невозможность доказать теорему.

Да, эта теорема очень известна и в некотором смысле стала «идолом», которому поклоняются математики-любители и про-фессионалы, но мало кому известно о том, что ее доказательство найдено, а произошло это в уже далеком 1995 году. Но обо всем по порядку.

Итак, Великая теорема Ферма (нередко называемая послед-ней теоремой Ферма), сформулированная в 1637 году блестя-щим французским математиком Пьером Ферма, очень проста по своей сути и понятна любому человеку со средним образова-нием. Она гласит, что формула а в степени n + b в степени n = c в степени n не имеет натуральных (то есть не дробных) решений для n > 2. Вроде все просто и понятно, но лучшие ученые-математики и простые любители бились над поиском решения более трех с половиной веков.

Почему она так знаменита? Сейчас узнаем...

Мало ли доказанных, недоказанных и пока не доказанных теорем? Тут все дело в том, что Великая теорема Ферма являет собой самый большой контраст между простотой формулировки и сложностью доказательства. Великая теорема Ферма - задача невероятно трудная, и тем не менее ее формулировку может понять каждый с 5-ю классами средней школы, а вот доказательство - даже далеко не всякий математик-профессионал. Ни в физике, ни в химии, ни в биологии, ни в той же математике нет ни одной проблемы, которая формулировалась бы так просто, но оставалась нерешенной так долго. 2. В чем же она состоит?

Начнем с пифагоровых штанов Формулировка действительно проста - на первый взгляд. Как известно нам с детства, «пифагоровы штаны на все стороны равны». Проблема выглядит столь простой потому, что в основе ее лежало математическое утверждение, которое всем известно, - теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.

В V веке до н.э. Пифагор основал пифагорейское братство. Пифагорейцы, помимо прочего, изучали целочисленные тройки, удовлетворяющие равенству x²+y²=z². Они доказали, что пифагоровых троек бесконечно много, и получили общие формулы для их нахождения. Наверное, они пробовали искать тройки и более высоких степеней. Убедившись, что это не получается, пифагорейцы оставили бесполезные попытки. Члены братства были больше философами и эстетами, чем математиками.

То есть легко подобрать множество чисел, которые прекрасно удовлетворяют равенству x²+y²=z²

Начиная с 3, 4, 5 - действительно, младшекласснику понятно, что 9+16=25.

Или 5, 12, 13: 25 + 144 = 169. Замечательно.

Так вот, оказывается, что их НЕТ. Вот тут начинается подвох. Простота - кажущаяся, потому что трудно доказать не наличие чего-то, а наоборот, отсутствие. Когда надо доказать, что решение есть, можно и нужно просто привести это решение.

Доказать отсутствие сложнее: например, некто говорит: такое-то уравнение не имеет решений. Посадить его в лужу? легко: бац - а вот оно, решение! (приведите решение). И все, оппонент сражен. А как доказать отсутствие?

Сказать: «Я не нашел таких решений»? А может, ты плохо искал? А вдруг они есть, только очень большие, ну очень, такие, что даже у сверхмощного компьютера пока не хватает силенок? Вот это-то и сложно.

В наглядном виде это можно показать так: если взять два квадратика подходящих размеров и разобрать на единичные квадратики, то из этой кучки единичных квадратиков получается третий квадратик (рис. 2):


А проделаем то же с третьим измерением (рис. 3) - не получается. Не хватает кубиков, или остаются лишние:


А вот математик XVII века француз Пьер де Ферма с увлечением исследовал общее уравнение x n +y n =z n . И, наконец, сделал вывод: при n>2 целочисленных решений не существует. Доказательство Ферма безвозвратно утеряно. Рукописи горят! Осталось лишь его замечание в «Арифметике» Диофанта: «Я нашел поистине удивительное доказательство этого предложения, но поля здесь слишком узки для того, чтобы вместить его».

Вообще-то, теорема без доказательства называется гипотезой. Но за Ферма закрепилась слава, что он никогда не ошибается. Даже если он не оставлял доказательства какого-нибудь утверждения, впоследствии оно подтверждалось. К тому же, Ферма доказал свой тезис для n=4. Так гипотеза французского математика вошла в историю как Великая теорема Ферма.



После Ферма над поиском доказательства работали такие ве-ликие умы, как Леонард Эйлер (в 1770 году им было предложено решение для n = 3),


Адриен Лежандр и Иоганн Дирихле (эти ученые в 1825 году совместно нашли доказательство для n = 5), Габриель Ламе (нашедший доказательство для n = 7) и многие другие. К середине 80-х годов прошлого века стало понятно, что ученый мир находится на пути к окончательному решению Великой теоремы Ферма, однако только в 1993 году математики увидели и поверили, что трехвековая эпопея по поиску доказа-тельства последней теоремы Ферма практически закончилась.

Легко показывается, что теорему Ферма достаточно доказать только для простых n: 3, 5, 7, 11, 13, 17, … При составных n доказательство остаётся в силе. Но и простых чисел бесконечно много…

В 1825 году, применив метод Софи Жермен, женщины-математика, Дирихле и Лежандр независимо друг от друга доказали теорему для n=5. В 1839 году тем же методом француз Габриель Ламе показал истинность теоремы для n=7. Постепенно теорему доказали почти для всех n, меньших ста.

Наконец, немецкий математик Эрнст Куммер в блестящем исследовании показал, что методами математики XIX века теорему в общем виде доказать нельзя. Премия Французской Академии Наук, учреждённая в 1847 году за доказательство теоремы Ферма, осталась невручённой.

В 1907 году богатый немецкий промышленник Пауль Вольфскель из-за неразделённой любви решил свести счёты с жизнью. Как истинный немец он назначил дату и время самоубийства: ровно в полночь. В последний день он составил завещание и написал письма друзьям и родственникам. Дела закончились раньше полночи. Надо сказать, что Пауль интересовался математикой. От нечего делать он пошёл в библиотеку и принялся читать знаменитую статью Куммера. Неожиданно ему показалось, что Куммер в ходе рассуждений совершил ошибку. Вольфскель стал с карандашом в руках разбирать это место статьи. Полночь миновала, наступило утро. Пробел в доказательстве был восполнен. Да и сам повод для самоубийства теперь выглядел совершенно нелепым. Пауль разорвал прощальные письма и переписал завещание.

Вскоре он умер естественной смертью. Наследники были изрядно удивлены: 100 000 марок (более 1 000 000 нынешних фунтов стерлингов) передавались на счёт Королевского научного общества Гёттингена, которое в том же году объявило о проведении конкурса на соискание премии Вольфскеля. 100 000 марок полагались доказавшему теорему Ферма. За опровержение теоремы не полагалось ни пфеннига…

Большинство профессиональных математиков считали поиск доказательства Великой теоремы Ферма безнадёжным делом и решительно отказывались тратить время на такое бесполезное занятие. Зато любители порезвились на славу. Через несколько недель после объявления на Гёттингенский университет обрушилась лавина «доказательств». Профессор Э. М. Ландау, в обязанность которого входил разбор присланных доказательств, раздал своим студентам карточки:

Уважаемый(ая) . . . . . . . .

Благодарю Вас за присланную Вами рукопись с доказательством Великой теоремы Ферма. Первая ошибка находится на стр. ... в строке... . Из-за неё всё доказательство утрачивает силу.
Профессор Э. М. Ландау

В 1963 году Пауль Коэн, опираясь на выводы Гёделя, доказал неразрешимость одной из двадцати трех проблем Гильберта — гипотезы континуума. А что, если Великая теорема Ферма тоже неразрешима?! Но истинных фанатиков Великой теоремы это ничуть не разочаровало. Появление компьютеров неожиданно дало математикам новый метод доказательства. После Второй мировой войны группы программистов и математиков доказали Великую теорему Ферма при всех значениях n до 500, затем до 1 000, а позже до 10 000.

В 80-е годы Сэмюэль Вагстафф поднял предел до 25 000, а в 90-ых математики заявили, что Великая теорема Ферма верна при всех значениях n до 4 миллионов. Но если от бесконечности отнять даже триллион триллионов, она не станет меньше. Математиков не убеждает статистика. Доказать Великую теорему значило доказать её для ВСЕХ n, уходящих в бесконечность.

В 1954 году два молодых японских друга-математика занялись исследованием модулярных форм. Эти формы порождают ряды чисел, каждая - свой ряд. Случайно Танияма сравнил эти ряды с рядами, порождаемыми эллиптическими уравнениями. Они совпадали! Но модулярные формы - геометрические объекты, а эллиптические уравнения - алгебраические. Между столь разными объектами никогда не находили связи.

Тем не менее, друзья после тщательной проверки выдвинули гипотезу: у каждого эллиптического уравнения существует двойник - модулярная форма, и наоборот. Именно эта гипотеза стала фундаментом целого направления в математике, но до тех пор, пока гипотеза Таниямы-Симуры не была доказана, всё здание могло рухнуть в любой момент.

В 1984 году Герхард Фрей показал, что решение уравнения Ферма, если оно существует, можно включить в некоторое эллиптическое уравнение. Двумя годами позже профессор Кен Рибет доказал, что это гипотетическое уравнение не может иметь двойника в модулярном мире. Отныне Великая теорема Ферма была нерасторжимо связана с гипотезой Таниямы-Симуры. Доказав, что любая эллиптическая кривая модулярна, мы делаем вывод, что эллиптического уравнения с решением уравнения Ферма не существует, и Великая теорема Ферма была бы тотчас же доказана. Но в течение тридцати лет доказать гипотезу Таниямы-Симуры не удавалось, и надежд на успех оставалось всё меньше.

В 1963 году, когда ему было всего десять лет, Эндрю Уайлс уже был очарован математикой. Когда он узнал о Великой теореме, то понял, что не сможет отступиться от неё. Школьником, студентом, аспирантом он готовил себя к этой задаче.

Узнав о выводах Кена Рибета, Уайлс с головой ушёл в доказательство гипотезы Таниямы-Симуры. Он решил работать в полной изоляции и секретности. «Я понимал, что всё, что имеет какое-то отношение к Великой теореме Ферма, вызывает слишком большой интерес… Слишком много зрителей заведомо мешают достижению цели». Семь лет упорной работы принесли плоды, Уайлс наконец завершил доказательство гипотезы Таниямы-Симуры.

В 1993 году английский математик Эндрю Уайлс представил миру свое доказательство Великой теоремы Ферма (Уайльс прочитал свой сенсационный доклад на конференции в Институте сэра Исаака Ньютона в Кембридже.) , работа над которым продолжалась более семи лет.

Пока в печати продолжалась шумиха, началась серьёзная работа по проверке доказательства. Каждый фрагмент доказательства должен быть тщательно изучен прежде, чем доказательство может быть признано строгим и точным. Уайлс провёл беспокойное лето в ожидании отзывов рецензентов, надеясь, что ему удастся получить их одобрение. В конце августа эксперты нашли недостаточно обоснованное суждение.

Оказалось, что данное решение содержит грубую ошибку, хотя в целом и верно. Уайлс не сдался, призвал на помощь известного специалиста в теории чисел Ричарда Тейлора, и уже в 1994 году они опубликовали исправлен-ное и дополненное доказательство теоремы. Самое удивительное, что эта работа заняла целых 130 (!) полос в математическом журнале «Annals of Mathematics». Но и на этом история не закончилась — последняя точка была поставлена только в следующем, 1995 году, когда в свет вышел окончательный и «идеальный», с математи-ческой точки зрения, вариант доказательства.

«…через полминуты после начала праздничного обеда по случаю её дня рождения, я подарил Наде рукопись полного доказательства» (Эндрю Уальс). Я ещё не говорил, что математики странные люди?


На этот раз никаких сомнений в доказательстве не было. Две статьи были подвергнуты самому тщательному анализу и в мае 1995 года были опубликованы в журнале «Annals of Mathematics».

С того момента прошло немало времени, однако в обществе до сих пор бытует мнение о неразрешимости Великой теоремы Фер-ма. Но даже те, кто знает о найденном доказательстве, продолжают работу в этом направлении — мало кого устраивает, что Великая теорема требует решения в 130 страниц!

Поэтому сейчас силы очень многих математиков (в основном это любители, а не профессио-нальные ученые) брошены на поиски простого и лаконичного до-казательства, однако этот путь, скорее всего, не приведет никуда...

источник

Итак, Великая теорема Ферма (нередко называемая послед­ней теоремой Ферма), сформулированная в 1637 году блестя­щим французским математиком Пьером Ферма, очень проста по своей сути и понятна любому человеку со средним образова­нием. Она гласит, что формула а в степени n + b в степени n = c в степени n не имеет натуральных (то есть не дробных) решений для n > 2. Вроде все просто и понятно, но лучшие ученые-математики и простые любители бились над поиском решения более трех с половиной веков.


Почему она так знаменита? Сейчас узнаем...



Мало ли доказанных, недоказанных и пока не доказанных теорем? Тут все дело в том, что Великая теорема Ферма являет собой самый большой контраст между простотой формулировки и сложностью доказательства. Великая теорема Ферма – задача невероятно трудная, и тем не менее ее формулировку может понять каждый с 5-ю классами средней школы, а вот доказательство – даже далеко не всякий математик-профессионал. Ни в физике, ни в химии, ни в биологии, ни в той же математике нет ни одной проблемы, которая формулировалась бы так просто, но оставалась нерешенной так долго. 2. В чем же она состоит?

Начнем с пифагоровых штанов Формулировка действительно проста – на первый взгляд. Как известно нам с детства, «пифагоровы штаны на все стороны равны». Проблема выглядит столь простой потому, что в основе ее лежало математическое утверждение, которое всем известно, – теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.

В V веке до н.э. Пифагор основал пифагорейское братство. Пифагорейцы, помимо прочего, изучали целочисленные тройки, удовлетворяющие равенству x²+y²=z². Они доказали, что пифагоровых троек бесконечно много, и получили общие формулы для их нахождения. Наверное, они пробовали искать тройки и более высоких степеней. Убедившись, что это не получается, пифагорейцы оставили бесполезные попытки. Члены братства были больше философами и эстетами, чем математиками.


То есть легко подобрать множество чисел, которые прекрасно удовлетворяют равенству x²+y²=z²

Начиная с 3, 4, 5 – действительно, младшекласснику понятно, что 9+16=25.

Или 5, 12, 13: 25 + 144 = 169. Замечательно.

Ну и так далее. А если взять похожее уравнение x³+y³=z³ ? Может, тоже есть такие числа?




И так далее (рис.1).

Так вот, оказывается, что их НЕТ. Вот тут начинается подвох. Простота – кажущаяся, потому что трудно доказать не наличие чего-то, а наоборот, отсутствие. Когда надо доказать, что решение есть, можно и нужно просто привести это решение.

Доказать отсутствие сложнее: например, некто говорит: такое-то уравнение не имеет решений. Посадить его в лужу? легко: бац – а вот оно, решение! (приведите решение). И все, оппонент сражен. А как доказать отсутствие?

Сказать: «Я не нашел таких решений»? А может, ты плохо искал? А вдруг они есть, только очень большие, ну очень, такие, что даже у сверхмощного компьютера пока не хватает силенок? Вот это-то и сложно.

В наглядном виде это можно показать так: если взять два квадратика подходящих размеров и разобрать на единичные квадратики, то из этой кучки единичных квадратиков получается третий квадратик (рис. 2):


А проделаем то же с третьим измерением (рис. 3) – не получается. Не хватает кубиков, или остаются лишние:





А вот математик XVII века француз Пьер де Ферма с увлечением исследовал общее уравнение x n +y n =z n . И, наконец, сделал вывод: при n>2 целочисленных решений не существует. Доказательство Ферма безвозвратно утеряно. Рукописи горят! Осталось лишь его замечание в «Арифметике» Диофанта: «Я нашел поистине удивительное доказательство этого предложения, но поля здесь слишком узки для того, чтобы вместить его».

Вообще-то, теорема без доказательства называется гипотезой. Но за Ферма закрепилась слава, что он никогда не ошибается. Даже если он не оставлял доказательства какого-нибудь утверждения, впоследствии оно подтверждалось. К тому же, Ферма доказал свой тезис для n=4. Так гипотеза французского математика вошла в историю как Великая теорема Ферма.

После Ферма над поиском доказательства работали такие ве­ликие умы, как Леонард Эйлер (в 1770 году им было предложено решение для n = 3),

Адриен Лежандр и Иоганн Дирихле (эти ученые в 1825 году совместно нашли доказательство для n = 5), Габриель Ламе (нашедший доказательство для n = 7) и многие другие. К середине 80-х годов прошлого века стало понятно, что ученый мир находится на пути к окончательному решению Великой теоремы Ферма, однако только в 1993 году математики увидели и поверили, что трехвековая эпопея по поиску доказа­тельства последней теоремы Ферма практически закончилась.

Легко показывается, что теорему Ферма достаточно доказать только для простых n: 3, 5, 7, 11, 13, 17, … При составных n доказательство остаётся в силе. Но и простых чисел бесконечно много…

В 1825 году, применив метод Софи Жермен, женщины-математика, Дирихле и Лежандр независимо друг от друга доказали теорему для n=5. В 1839 году тем же методом француз Габриель Ламе показал истинность теоремы для n=7. Постепенно теорему доказали почти для всех n, меньших ста.


Наконец, немецкий математик Эрнст Куммер в блестящем исследовании показал, что методами математики XIX века теорему в общем виде доказать нельзя. Премия Французской Академии Наук, учреждённая в 1847 году за доказательство теоремы Ферма, осталась невручённой.

В 1907 году богатый немецкий промышленник Пауль Вольфскель из-за неразделённой любви решил свести счёты с жизнью. Как истинный немец он назначил дату и время самоубийства: ровно в полночь. В последний день он составил завещание и написал письма друзьям и родственникам. Дела закончились раньше полночи. Надо сказать, что Пауль интересовался математикой. От нечего делать он пошёл в библиотеку и принялся читать знаменитую статью Куммера. Неожиданно ему показалось, что Куммер в ходе рассуждений совершил ошибку. Вольфскель стал с карандашом в руках разбирать это место статьи. Полночь миновала, наступило утро. Пробел в доказательстве был восполнен. Да и сам повод для самоубийства теперь выглядел совершенно нелепым. Пауль разорвал прощальные письма и переписал завещание.

Вскоре он умер естественной смертью. Наследники были изрядно удивлены: 100 000 марок (более 1 000 000 нынешних фунтов стерлингов) передавались на счёт Королевского научного общества Гёттингена, которое в том же году объявило о проведении конкурса на соискание премии Вольфскеля. 100 000 марок полагались доказавшему теорему Ферма. За опровержение теоремы не полагалось ни пфеннига…


Большинство профессиональных математиков считали поиск доказательства Великой теоремы Ферма безнадёжным делом и решительно отказывались тратить время на такое бесполезное занятие. Зато любители порезвились на славу. Через несколько недель после объявления на Гёттингенский университет обрушилась лавина «доказательств». Профессор Э. М. Ландау, в обязанность которого входил разбор присланных доказательств, раздал своим студентам карточки:


Уважаемый(ая) . . . . . . . .

Благодарю Вас за присланную Вами рукопись с доказательством Великой теоремы Ферма. Первая ошибка находится на стр. ... в строке... . Из-за неё всё доказательство утрачивает силу.
Профессор Э. М. Ландау











В 1963 году Пауль Коэн, опираясь на выводы Гёделя, доказал неразрешимость одной из двадцати трех проблем Гильберта — гипотезы континуума. А что, если Великая теорема Ферма тоже неразрешима?! Но истинных фанатиков Великой теоремы это ничуть не разочаровало. Появление компьютеров неожиданно дало математикам новый метод доказательства. После Второй мировой войны группы программистов и математиков доказали Великую теорему Ферма при всех значениях n до 500, затем до 1 000, а позже до 10 000.

В 80-е годы Сэмюэль Вагстафф поднял предел до 25 000, а в 90-ых математики заявили, что Великая теорема Ферма верна при всех значениях n до 4 миллионов. Но если от бесконечности отнять даже триллион триллионов, она не станет меньше. Математиков не убеждает статистика. Доказать Великую теорему значило доказать её для ВСЕХ n, уходящих в бесконечность.




В 1954 году два молодых японских друга-математика занялись исследованием модулярных форм. Эти формы порождают ряды чисел, каждая - свой ряд. Случайно Танияма сравнил эти ряды с рядами, порождаемыми эллиптическими уравнениями. Они совпадали! Но модулярные формы – геометрические объекты, а эллиптические уравнения – алгебраические. Между столь разными объектами никогда не находили связи.

Тем не менее, друзья после тщательной проверки выдвинули гипотезу: у каждого эллиптического уравнения существует двойник – модулярная форма, и наоборот. Именно эта гипотеза стала фундаментом целого направления в математике, но до тех пор, пока гипотеза Таниямы–Симуры не была доказана, всё здание могло рухнуть в любой момент.

В 1984 году Герхард Фрей показал, что решение уравнения Ферма, если оно существует, можно включить в некоторое эллиптическое уравнение. Двумя годами позже профессор Кен Рибет доказал, что это гипотетическое уравнение не может иметь двойника в модулярном мире. Отныне Великая теорема Ферма была нерасторжимо связана с гипотезой Таниямы–Симуры. Доказав, что любая эллиптическая кривая модулярна, мы делаем вывод, что эллиптического уравнения с решением уравнения Ферма не существует, и Великая теорема Ферма была бы тотчас же доказана. Но в течение тридцати лет доказать гипотезу Таниямы–Симуры не удавалось, и надежд на успех оставалось всё меньше.

В 1963 году, когда ему было всего десять лет, Эндрю Уайлс уже был очарован математикой. Когда он узнал о Великой теореме, то понял, что не сможет отступиться от неё. Школьником, студентом, аспирантом он готовил себя к этой задаче.

Узнав о выводах Кена Рибета, Уайлс с головой ушёл в доказательство гипотезы Таниямы–Симуры. Он решил работать в полной изоляции и секретности. «Я понимал, что всё, что имеет какое-то отношение к Великой теореме Ферма, вызывает слишком большой интерес… Слишком много зрителей заведомо мешают достижению цели». Семь лет упорной работы принесли плоды, Уайлс наконец завершил доказательство гипотезы Таниямы–Симуры.

В 1993 году английский математик Эндрю Уайлс представил миру свое доказательство Великой теоремы Ферма (Уайльс прочитал свой сенсационный доклад на конференции в Институте сэра Исаака Ньютона в Кембридже.) , работа над которым продолжалась более семи лет.







Пока в печати продолжалась шумиха, началась серьёзная работа по проверке доказательства. Каждый фрагмент доказательства должен быть тщательно изучен прежде, чем доказательство может быть признано строгим и точным. Уайлс провёл беспокойное лето в ожидании отзывов рецензентов, надеясь, что ему удастся получить их одобрение. В конце августа эксперты нашли недостаточно обоснованное суждение.

Оказалось, что данное решение содержит грубую ошибку, хотя в целом и верно. Уайлс не сдался, призвал на помощь известного специалиста в теории чисел Ричарда Тейлора, и уже в 1994 году они опубликовали исправлен­ное и дополненное доказательство теоремы. Самое удивительное, что эта работа заняла целых 130 (!) полос в математическом журнале «Annals of Mathematics». Но и на этом история не закончилась — последняя точка была поставлена только в следующем, 1995 году, когда в свет вышел окончательный и «идеальный», с математи­ческой точки зрения, вариант доказательства.

«…через полминуты после начала праздничного обеда по случаю её дня рождения, я подарил Наде рукопись полного доказательства» (Эндрю Уальс). Я ещё не говорил, что математики странные люди?






На этот раз никаких сомнений в доказательстве не было. Две статьи были подвергнуты самому тщательному анализу и в мае 1995 года были опубликованы в журнале «Annals of Mathematics».

С того момента прошло немало времени, однако в обществе до сих пор бытует мнение о неразрешимости Великой теоремы Фер­ма. Но даже те, кто знает о найденном доказательстве, продолжают работу в этом направлении — мало кого устраивает, что Великая теорема требует решения в 130 страниц!

Поэтому сейчас силы очень многих математиков (в основном это любители, а не профессио­нальные ученые) брошены на поиски простого и лаконичного до­казательства, однако этот путь, скорее всего, не приведет никуда...

В продолжение темы:
Аксессуары

(49 слов) В повести Тургенева «Ася» человечность проявил Гагин, когда взял на попечение незаконнорожденную сестру. Он же вызвал друга на откровенную беседу по поводу чувства...

Новые статьи
/
Популярные